Refractive index dispersion of AgCl1-xBrx (0≤x≤1) and Ag1-xTlxBr1-xIx (0≤x≤0.05) / Korsakov A.S., Vrublevsky D.S., Lvov A.E., Zhukova L.V. // Optical Materials. - 2017. - V. 64, l. . - P. 40-46.

ISSN:
09253467
Type:
Article
Abstract:
For polycrystalline AgCl1-xBrx (0 ≤ x ≤ 1) and Ag1-xTlxBr1-xIx (0 ≤ x ≤ 0.05) thin plates manufactured by hot embossing, we recorded the ultraviolet (UV) to near-infrared (NIR) transmission spectra in order to reveal the absorption edge and to measure the refractive index at short wavelengths. The former moves towards longer wavelengths and the latter increases significantly, when the substituting agent content in the solid solution (x) is being increased. Using mid-infrared (MIR) spectra, recorded by Fourier-transform infrared spectroscopy (FTIR), we determined both real (n) and imaginary (k) parts of the refractive index at 4.5, 5.0, 8.0, 12.0, 14.0 μm. These data, together with the ones collected earlier with He-Ne laser and at 10.6 μm via FTIR, allow observing that the introduction of a heavy substituting agent into a host lattice forces the refractive index to grow gradually at a fixed wavelength and to fall considerably within each composition (vice versa for the extinction coefficient), especially in the NIR. Fresnel reflection (R) and absorption coefficients (K) were also calculated, and several error-calculation equations for n, k, K, and R were proposed concerning all contributions of each approach used. © 2016 Elsevier B.V.
Author keywords:
Material dispersion; Mid-infrared materials; Refractive index; Silver and thallium halides
Index keywords:
Dispersion (waves); Dispersions; Fourier transform infrared spectroscopy; Infrared devices; Silver; Silver halides; Absorption co-efficient; Extinction coefficients; Material dispersions; Mid-infrared
DOI:
10.1016/j.optmat.2016.11.038
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84998727491&doi=10.1016%2fj.optmat.2016.11.038&partnerID=40&md5=c004dac44d0ac5620a1c211840305d5b
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84998727491&doi=10.1016%2fj.optmat.2016.11.038&partnerID=40&md5=c004dac44d0ac5620a1c211840305d5b
Affiliations Ural Federal University named after the first President of Russia B.N. Yeltsin, ICT (Build. 3), Dept. of Physical Chemistry and Chemistry of Colloids, 19 Mira Str., Yekaterinburg, Russian Federation
Author Keywords Material dispersion; Mid-infrared materials; Refractive index; Silver and thallium halides
Funding Details 5440.2015.3, Ministry of Education and Science of the Russian Federation
Funding Text The work was supported by Act 211 of the Government of the Russian Federation, contract № 02.A03.21.0006. A.K. also acknowledges Ministry of Education and Science of the Russian Federation (Grant № 5440.2015.3). D.V. would like to thank M. Korsakov (Ural Federal University, Yekaterinburg) for provision of single crystal samples and E. Krupennikov (Krasovsky Institute of Mathematics and Mechanics, Yekaterinburg) for technical support.
References Bunimovich, D., Katzir, A., Dielectric properties of silver halide and potassium halide crystals (1993) Appl. Opt., 32 (12), pp. 2045-2048; Artjushenko, V., Bocharnikov, A., Sakharova, T., Usenov, I., Mid-infrared fiber optics for 1-18 μm range (2014) Optik & Photonik, 9 (4), pp. 35-39; Zhukova, L., Korsakov, A., Vrublevsky, D., New Infrared Materials – Crystals and Optical Fibers (2014), p. 280. , Ural University Yekaterinburg; Korsakov, A., Chazov, A., Zhukova, L., Terlyga, N., Vrublevsky, D., Korsakov, V., Zhukov, V., AgBr-TlI, AgBr-KRS-5 photonic crystals and fibers based on them for middle and far infrared (2012) Advanced Photonics Congress, Specialty Optical Fibers, SOF, pp. 17-20. , June 2012. Paper SM2E.3; Korsakov, A., Zhukova, L., Salimgareev, D., Zhukov, V., Crystals based on solid solution of Ag1-xTlxBr1-xIx for the manufacturing of IR fibers (2015) Chin. Opt. Lett., 13 (9). , 090602(1-3); Porat, Y., Gabay, I., Varssano, D., Barequet, I., Neudorfer, M., Rosner, M., Katzir, A., Optical coherence tomography (OCT) in laser bonding of incisions in the cornea (2015) Proc. SPIE, 9307. , 93170M(1–7); Damin, C.A., Sommer, A.J., Characterization of silver halide fiber optics and hollow silica waveguides for use in the construction of a mid-infrared attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy probe (2013) Appl. Spectrosc., 67, pp. 1252-1263; Wallner, O., Artjushenko, V., Flatscher, R., Development of silver-halide single-mode fibers for modal filtering in the mid-infrared (2004) Proc. SPIE, 5491, pp. 636-646; Shmygalev, A.S., Zhilkin, B.P., Korsakov, A.S., Nizovtsev, M.I., Sterlyagov, A.N., Terekhov, V.I., Transmission of IR light by light guides made of silver halide solid solutions (2016) Techn. Phys. Lett., 42 (9), pp. 883-885; Israeli, S., Katzir, A., Optical losses of AgClBr crystals and fibers in the middle infrared (2011) Opt. Mat., 33, pp. 1825-1828; Korsakov, A., Vrublevsky, D., Korsakov, V., Zhukova, L., Investigating the optical properties of polycrystalline AgCl1−xBrx (0≤x≤1) and Ag0.95Tl0.05Br0.95I0.05 for IR engineering (2015) Appl. Opt., 54 (26), pp. 8004-8009; Korsakov, A., Vrublevsky, D., Zhukova, L., Measuring spectral transmission and refractive index of AgCl1−xBrx (0≤x≤1) and Ag1−xTlxBr1−xIx (0≤x≤0.05) at the wavelength of 10.6 μm (2015) Opt. Mat., 50 (B), pp. 204-207; Dharma, J., Simple Method of Measuring the Band Gap Energy Value of TiO2 in the Powder Form Using a UV/Vis/NIR Spectrometer (2012), p. 4. , PerkinElmer Shelton, CT USA Application note: UV/Vis/NIR Spectrometer; Ravindra, N., Ganapathy, P., Choi, J., Energy gap – refractive index relations in semiconductors – an overview (2007) Infrared Phys. Techn, 50, pp. 21-29; Moss, T., Relations between the refractive index and energy gap of semiconductors (1985) Phys. Stat. Sol. B, 131 (2), pp. 415-427; Reddy, R., Anjaneyulu, S., Viswanath, R., Optical and electronic properties of compound semiconductors (1992) Infrared Phys., 33 (5), pp. 385-388; Reddy, R., Ahammed, Y., A study on the Moss relation (1995) Infrared Phys. Technol, 36 (5), pp. 825-830; Herve, P., Vandamme, L., General relation between refractive index and energy gap in semiconductors (1994) Infrared Phys. Technol, 35 (4), pp. 609-615; Anani, M., Mathieu, C., Hamza, A., Lebid, S., Zouaoui, C., Amar, Y., Model for calculating the refractive index of a III-IV semiconductor (2008) Comput. Mat. Sci., 41 (4), pp. 570-574; Kumar, V., Singh, J., Model for calculating the refractive index of different materials (2010) Indian J. Pure Appl. Phys., 48, pp. 571-574; Tripathy, S., Refractive indices of semiconductors from energy gaps (2015) Opt. Mat., 46, pp. 240-246; Dionne, G., Woolley, J.C., Optical properties of some Pb1-xSnxTe alloys determined from infrared plasma reflectivity (1972) Phys. Rev. B, 6 (10), pp. 3898-3913; Gopal, V., Energy gap-refractive index interrelation (1982) Infrared Phys., 22, pp. 255-257; Fleming, J.W., Dispersion in GeO2-SiO2 glasses (1984) Appl. Opt., 23 (24), pp. 4486-4493; Padera, F., Measuring Absorptance (k) and Refractive Index (n) of Thin Films with the PerkinElmer Lambda 950/1050 High Performance UV-Vis/NIR Spectrometers (2013), p. 9. , PerkinElmer Shelton, CT USA Application note: UV/Vis Spectroscopy; Tuchin, V., Lasers and Fiber Optics in Biomedical Research (2010), p. 500. , second ed. Fizmatlit Moscow; Voronkova, E., Gretchushnikov, B., Distler, G., Petrov, I., Optical Materials for the Infrared Engineering (1963), p. 336. , Nauka (Science) Moscow; Fendley, J., Measurement of refractive index using a Michelson interferometer (1982) Phys. Educ., 17, pp. 209-211
Correspondence Address Zhukova, L.V.; Ural Federal University named after the first President of Russia B.N. Yeltsin, ICT (Build. 3), Dept. of Physical Chemistry and Chemistry of Colloids, 19 Mira Str., Russian Federation
Publisher Elsevier B.V.
CODEN OMATE
Language of Original Document English
Abbreviated Source Title Opt Mater
Source Scopus