Magnetic hyperthermia in a system of magnetically interacting particles / Zubarev A.Y., Abu-Bakr A.F., Iskakova L.Y., Bulycheva S.V. // Magnetohydrodynamics. - 2015. - V. 51, l. 4. - P. 647-654.

ISSN:
0024998X
Type:
Article
Abstract:
Results of a theoretical study of the hyperthermia effect in a suspension of magnetically interacting non-Brownian particles subjected to a linearly polarized oscillating magnetic field are presented. The results show that the interparticle interaction significantly en- hances the production of heat.
Author keywords:
Index keywords:
нет данных
DOI:
нет данных
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85000577381&partnerID=40&md5=539c0ded5757341e2c5463127a009eaf
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85000577381&partnerID=40&md5=539c0ded5757341e2c5463127a009eaf
Affiliations Ural Federal University, 51 Lenin Ave., Yekaterinburg, Russian Federation; Menoufiya University, Shebin El-Koom, Egypt; Nosov Magnitogorsk State Technical University, 38 Lenin str., Magnitogorsk, Russian Federation
Funding Details 13-01-96047, RFBR, Russian Foundation for Basic Research; 13-02-91052, RFBR, Russian Foundation for Basic Research; 14-08-00283, RFBR, Russian Foundation for Basic Research; 3.12.2014/K, MoE, Ministry of Education
References He, Y., Shirazaki, M., Liu, H., Himeno, R., Sun, Z., A numerical coupling model to analyze the blood flow, temperature, and oxygen transport in human breast tumor under laser irradiation (2006) Computers in Biology and Medicine, 36, pp. 1336-1350; Asteanoaei, I., Dumitru, I., Staneu, A., Chiriac, H., A thermo-fluid analysis in magnetic hyperthermia (2014) Chin. Phys. B, 23 (4); Silva, A.C., Oliveira, T.R., Mamani, J.B., Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment (2011) Int. J. Nanomedicine, 6, pp. 591-603; Gubin, S.P., Koksharov, Y.A., Khomntov, G.B., Yurkov, G.Y., Magnetic nanoparticles: preparation, structure and properties (2005) Russian Chemical Reviews, 74, pp. 489-520. , (in Russian); Serantes, D., Baldomir, D., Martinez-Boubeta, C., Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles (2010) J. Appl. Phys, 108; Jordon, A., Scholz, R., Maier-Hauff, K., Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia (2001) J. Magnetism and Magnetic Materials, 225, pp. 118-126; Laurent, S., Dutz, S., Hafeli, U., Mahmoudi, M., Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles (2011) Advances in Colloid and Interface Science, 166, pp. 8-23; Haase, C., Nawak, U., Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles (2012) Phys. Rev. B, 85; Cebers, A., Ozols, M., Dynamics of an active magnetic particle in a rotating magnetic field (2006) Phys. Rev. E, 73; Merigut, G., Wandersman, E., Dubois, E., Magnetic fluids with tunable interparticle interaction: monitoring the under-field local structure (2012) Magnetohydrodynamics, 48, pp. 415-426; Fortin, J.P., Gazeau, F., Wilhelm, C., Intracellular heating of living cells through Neel relaxation of magnetic nanoparticles (2008) Eur. Biophys. J, 37, pp. 223-228; Trahms, L., Biomedical Application of Magnetic Nanoparticles (2009) Lecture Notes in Physics 763, , Colloidal Magnetic Fluids (Ed. S. Odenbach); Vallejo-Fermandez, G., Whear, O., Roca, A.G., Hussin, S., Timmi, J., Petel, V., Grady, K.O., Mechanisms of hyperthermia in magnetic nanoparticles (2013) J. Phys. D: Appl. Phys, 46; Raikher, Y.L., Stepanov, V.I., Physical aspects of magnetic hyperthermia: low-frequency AC field absorption in a magnetic colloid (2014) J. Magnetism and Magnetic Materials, 368, pp. 421-427; Rosensweig, R.E., Heating magnetic fluid with alternating magnetic field (2002) J. Magn. Magn. Mater, 252, pp. 370-374; Glockl, G., Hergt, R., Zeisberger, M., Dutz, S., Nagel, S., Weitschies, W., The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia (2006) J. Phys.: Condens. Matter, 18, pp. S2935-S2949; Goya, G.F., Lima, E., Torres, T.E., Rossi, L.M., Magnetic hyperthermia with FeO nanoparticles: the Influence of particle size on energy absorption (2008) IEEE Transactions in Magnetic, 44, pp. 4444-4447; Landi, G.T., Role of dipolar interaction in magnetic hyperthermia (2014) Physical Review B, 89; Pokrovsky, V.N., Statistical Mechanics of Diluted Suspensions, , (Nauka, Moscow, 1978) (in Russian); Abu-Bakr, A.F., Zubarev, A.Y., Effect of interparticle interaction on Magnetic Hyperthermia a theoretical study (2015) J. Nanofluids, 4, pp. 147-150; Christensen, R.M., (2005) Mechanics of Composite Materials, , (Dover Publications); Wang, B., (2012) Rheology and Magnetolysis of Tumor Cells, , (PhD Thesis, Universite de Nice-Sophia Antipolis UFR Sciences, France)
Publisher Latvijas Universitate
Language of Original Document English
Abbreviated Source Title Magnetohydrodynamics
Source Scopus