References |
Properties, A., Handbook, P.M.A., Ed. by J. E. Hatch (ASM (1989) Ohio, 1984. , Metallurgiya, Moscow; Mondol’fo, L.F., (1976) Aluminum Alloys: Structure and Properties; Belov, N.A., (2010) Phase Content of Industrial and Perspective Aluminum Alloys; Cao, X., Campbell, J., Morphology of ß-Al5FeSi phase in Al–Si cast alloys (2006) Mater. Trans., 47, pp. 1303-1312; Seifeddine, S., Svensson, I.L., The influence of Fe and Mn content and cooling rate on the microstructure and mechanical properties of A380-die casting alloys (2009) Metall. Sci. Techn., 27, pp. 11-20; Tash, M., Samuela, F.H., Mucciardic, F., Doty, H.W., Effect of metallurgical parameters on the hardness and microstructural characterization of ascast and heat-treated 356 and 319 aluminum alloys (2007) Mater. Sci. Eng., A, 443, pp. 185-201; Belov, V.D., Tsydenov, A.G., Novichkov, S.B., Savchenko, S.V., Stroganov, A.G., Belov, N.A., (2011) RF Patent 2415193; Kazennov, N.V., Kalmykov, K.B., Dunaev, S.F., Dmitrieva, N.E., Phase equilibria in the Al–Mn–Si system at 823 K (2011) Metal Sci. Heat Treat., 53, pp. 113-117; Moraes, H.L., Oliveira, J.R., Espinosa, D., Tenorio, J.A., Removal of iron from molten recycled aluminum through intermediate phase filtration (2006) Mater. Trans., 47, pp. 1731-1736; State Standard, G.O.S.T., (1988) 27637-88: Self-Finished Products from Aluminum Deformed Thermo-Hardening Alloys. Control of Dead-Burning by Metallographical Method, , Izd-vo Standartov, Moscow; Oliver, W.C., Pharr, G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments (1992) Mater. Res., 7, pp. 1564-1583; Golovin, Y.I., (2009) Nanoindentation and its Possibilities. Mechanical Engineering.; Mil’man, Y.V., Grinkevich, K.E., Mordel’, L.V., The energy concept of hardness upon instrumental indentation (2013) Deform. Razrush. Mater., 2013, pp. 2-9; Gogolinskii, K.V., L’vova, N.A., Useinov, A.S., Application of scanning microprobe analysis and nanodurometers to the study of the mechanical properties of solids at a nanolevel (2007) Zavod. Lab., Diagn. Mater., 73, pp. 28-36; Microcsopic Theory of Mechanical and Thermal Properties of Crystals, , G. Leibfrid in Handbuch der Physik (Springer, Berlin, 1955; Fizmatgiz, Moscow, 1963), Vol. VII, part2; Golovin, Y.I., Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: A review (2008) Phys. Solid State, 50, pp. 2205-2236; Bulychev, S.I., Relation between the reduced and unreduced hardness in nanomicroindentation tests (1999) Tech. Phys., 44, pp. 775-781; Miroshnichenko, S.V., Dispersion of the billet hardness as a criterion of optimality for accumulated strain (2005) Fiz. Tekh. Vys. Davlenii, 15, pp. 72-75; Yang, W., Ji, S., Zhou, X., Stone, I., Scamans, G., Thompson, G.E., Fan, Z., Heterogeneous nucleation of a-Al grain on primary a-AlFeMnSi intermetallic investigated using 3D SEM ultramicrotomy and HR TEM (2014) Metall. Mater. Trans. A, 45, pp. 3971-3980; Poková, M., Cieslar, M., Lacaze, J., The influence of silicon content on recrystallization of twin-roll cast aluminum alloys for heat exchangers (2012) Acta Phys. Polon. A, 122, pp. 625-629; Chikova, O.A., Shishkina, E.V., Petrova, A.N., Brodova, I.G., Measuring the nanohardness of commercial submicrocrystalline aluminum alloys produced by dynamic pressing (2014) Phys. Met. Metallogr., 115, pp. 523-528; Muskhelishvili, N.I., (1966) Some Basic Problems of Mathematical Theory of Elasticity; Frantsevich, I.N., Voronov, F.F., Bakuta, S.A., (1982) Elastic Constants and Metal and Nonmetal Modules of Elasticity. A Hanfbook; Huntington, H.B., The Elastic Constants of Crystals (1958) Solid State Physics: Advances in Research and Applications, 7, pp. 213-351; Yurkova, A.I., Belotskii, A.V., Byakova, A.V., Mil’man, Y.V., Mechannical properties of nanostructural iron obtained by severe plastic deformation by friction (2009) Nanosyst., Nanomater., Nanotechn., 7, pp. 619-632; Firstov, S.A., Gorban’, V.F., Pechkovskii, E.P., Measurement of ultimate values of hardness, elastic strain and stress of materials by an automatic indentation method (2008) Materialovedenie, 8, pp. 15-21 |