References |
Arora, S., Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems (1998) Journal of the ACM, 45; Baburin, A., Delia Croce, F., Gimadi, E.K., Glazkov, Y.V., Paschos, V.T., Approximation algorithms for the 2-peripatetic salesman problem with edge weights 1 and 2 (2009) Discrete Applied Mathematics, 157 (9), pp. 1988-1992; Bektas, T., The multiple traveling salesman problem: an overview of formulations and solution procedures (2006) Omega, 34, pp. 209-219. , doi: 10.1016/j.omega.2004.10.004; Bläser, M., Manthey, B., Approximating maximum weight cycle covers in directed graphs with weights zero and one (2005) Algorithmica, 42, pp. 121-139. , doi: 10.1007/s00453-004-l 131-0; Bläser, M., Manthey, B., Sgall, J., An improved approximation algorithm for the asymmetric TSP with strengthened triangle inequality (2006) Journal of Discrete Algorithms, 4, pp. 623-632. , doi:10.1016/j.jda.2005.07.004; Bläser, M., Siebert, B., (2001), Computing cycle covers without short cycles. In Algorithms—ESA 2001, 368-379. Springer; Chandran, L.S., Ram, L.S., On the relationship between ATSP and the cycle cover problem (2007) Theoretical Computer Science, 370, pp. 218-228. , doi: 10.1016/j.tcs.2006.10.026; Christofides, N., (1975), Worst-case analysis of a new heuristic for the traveling salesman problem. In Symposium on New Directions and Recent Results in Algorithms and Complexity, 441; Dantzig, G.B., Ramser, J.H., The truck dispatching problem (1959) Management science, 6 (1), pp. 80-91; De Kort, J., Lower bounds for symmetric k-peripatetic salesman problems (1991) Optimization, 20, pp. 113-122; Gan, G., Ma, C., Wu, J., (2007), Data Clustering: Theory, Algorithms, and Applications. ASA-SIAM Series on Statistics and Applied Probability. SIAM, Society for Industrial and Applied Mathematics; Garey, M.R., Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co. (1979), New York, NY, USA; Gimadi, E., Asymptotically optimal algorithm for finding one and two edge-disjoint traveling salesman routes of maximal weight in euclidean space (2008) Proc. of the Steklov institute of Mathematics, 263, pp. S57-S67; Golden, B., Raghavan, S., Wasil, E.A., The vehicle routing problem: latest advances and new challenges (2008) Operations research/Computer science interfaces series, , 43. Springer; Khachai, M., Neznakhina, E., Approximability of the problem about a minimum-weight cycle cover of a graph (2015) Doklady Mathematics, 91 (2), pp. 240-245. , doi: 10.1134/S1064562415020313; Khachai, M., Neznakhina, E., A polynomial-time approximation scheme for the euclidean problem on a cycle cover of a graph (2015) Proceedings of the Steklov Institute of Mathematics, 289 (1), pp. 111-125. , doi: 10.1134/S0081543815050107; Khachay, M., Neznakhina, K., (2015), http://dx.doi.org/10.1007/sl0898-015-0391-3., Approximability of the minimum-weight k-size cycle cover problem. Journal of Global Optimization. doi:10.1007/sl0898-015-0391-3. URL; Krarup, J., The peripatetic salesman and some related unsolved problems (1975) Combinatorial programming: methods and applications, pp. 173-178. , Springer; Kumar, S., Panneerselvam, R., A survey on the vehicle routing problem and its variants (2012) Intelligent Information Management, 4, pp. 66-74. , doi: 10.4236/iim.2012.43010; Manthey, B., On approximating restricted cycle covers (2008) SIAM Journal on Computing, 38, pp. 181-206. , doi: 10.1137/060676003; Manthey, B., Minimum-weight cycle covers and their approximability (2009) Discrete Applied Mathematics, 157, pp. 1470-1480. , doi:10.1016/j.dam.2008.10.005; Papadimitriou, C., Euclidean TSP is NP-complete (1977) Theoret. Comput. Sci., pp. 237-244; Sahni, S., Gonzales, T., P-complete approximation problems (1976) Journal of the ACM, 23, pp. 555-565; Szwarcfiter, J., Wilson, L., (1979), The cycle cover problem. Technical Report 131, University of Newcastle upon Tyne; Toth, P., Vigo, D., (2001) The Vehicle Routing Problem, , Society for Industrial and Applied Mathematics Philadelphia, PA, USA |