References |
Arora, S., Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems (1998) J. ACM, 45, pp. 753-782; Asano, T., Katoh, N., Tamaki, H., Tokuyama, T., Covering points in the plane by k-tours: A polynomial time approximation scheme for fixed k (1996) IBM Tokyo Research; Cardon, S., Dommers, S., Eksin, C., Sitters, R., Stougie, A., Stougie, L., A PTAS for the multiple depot vehicle routing problem (2008) Technical Report 2008, 3. , http://www.win.tue.nl/bs/spor/2008-03.pdf, Eindhoven Univ. of Technology, March; Christofides, N., Worst-case analysis of a new heuristic for the traveling salesman problem (1975) Symposium on New Directions and Recent Results in Algorithms and Complexity, P. 441; Dantzig, G.B., Ramser, J.H., The truck dispatching problem (1959) Manage. Sci., 6 (1), pp. 80-91; Das, A., Mathieu, C., A quasi-polynomial time approximation scheme for Euclidean capacitated vehicle routing (2010) Proceedings of the Twenty-First Annual ACMSIAM Symposium on Discrete Algorithms, pp. 390-403. , SODA 2010, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA; Das, A., Mathieu, C., A quasipolynomial time approximation scheme for Euclidean capacitated vehicle routing (2015) Algorithmica, 73, pp. 115-142; Gimadi, E.K., Rykov, I.A., On the asymptotic optimality of a solution of the euclidean problem of covering a graph by m nonadjacent cycles of maximum total weight (2016) Dokl. Math., 93 (1), pp. 117-120; Golden, B.L., Raghavan, S., Wasil, E.A., The Vehicle Routing Problem: Latest Advances and New Challenges (2008) Operations Research/Computer Science Interfaces Series, 43. , Springer, Heidelberg; Haimovich, M., Rinnooy Kan, A.H.G., Bounds and heuristics for capacitated routing problems (1985) Math. Oper. Res, 10 (4), pp. 527-542; Hubbert, S., Gia, Q.T.L., Morton, T.M., (2015) Spherical Radial Basis Functions, Theory and Applications. Springerbriefs in Mathematics, 1St Edn, , Springer International Publishing, Heidelberg; Khachay, M., Neznakhina, K., Approximability of the minimum-weight k-size cycle cover problem (2015) J. Global Optim., , http://dx.doi.org/10.1007/s10898-015-0391-3; Khachay, M., Zaytseva, H., Polynomial time approximation scheme for single-depot euclidean capacitated vehicle routing problem (2015) COCOA 2015. LNCS, 9486, pp. 178-190. , http://dx.doi.org/10.1007/978-3-319-26626-8_14, Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.), Springer, Cham; Kumar, S., Panneerselvam, R., A survey on the vehicle routing problem and its variants (2012) Intell. Inf. Manage., 4, pp. 66-74; Papadimitriou, C., Euclidean TSP is NP-complete (1997) Theor. Comput. Sci., 4, pp. 237-244; Sutherland, W.A., (2009) Introduction to Metric and Topological Spaces, , 2nd edn. Oxford University Press, Oxford, [Oxford Mathematics]; Toth, P., Vigo, D., (2001) The Vehicle Routing Problem, , Society for Industrial and Applied Mathematics, Philadelphia, PA, USA |