Radionuclides: Accumulation and transport in plants / Gupta D.K., Chatterjee S., Datta S., Voronina A.V., Walther C. // Reviews of Environmental Contamination and Toxicology. - 2017. - V. 241, l. . - P. 139-160.

ISSN:
01795953
Type:
Book Chapter
Abstract:
Application of radioactive elements or radionuclides for anthropogenic use is a widespread phenomenon nowadays. Radionuclides undergo radioactive decays releasing ionizing radiation like gamma ray(s) and/or alpha or beta particles that can displace electrons in the living matter (like in DNA) and disturb its function. Radionuclides are highly hazardous pollutants of considerable impact on the environment, food chain and human health. Cleaning up of the contaminated environment through plants is a promising technology where the rhizosphere may play an important role. Plants belonging to the families of Brassicaceae, Papilionaceae, Caryophyllaceae, Poaceae, and Asteraceae are most important in this respect and offer the largest potential for heavy metal phytoremediation. Plants like Lactuca sativa L., Silybum marianum Gaertn., Centaurea cyanus L., Carthamus tinctorius L., Helianthus annuus and H. tuberosus are also important plants for heavy metal phytoremediation. However, transfer factors (TF) of radionuclide from soil/water to plant ([Radionuclide]plant/[Radionuclide]soil) vary widely in different plants. Rhizosphere, rhizobacteria and varied metal transporters like NRAMP, ZIP families CDF, ATPases (HMAs) family like P1B-ATPases, are involved in the radio-phytoremediation processes. This review will discuss recent advancements and potential application of plants for radionuclide removal from the environment. © Springer International Publishing Switzerland 2016.
Author keywords:
Caesium; Metal transporters; Radio-phytoremediation; Radionuclide; Radium; Rhizosphere; Uranium
Index keywords:
pollutant; soil pollutant; bioavailability; bioremediation; metabolism; pharmacokinetics; plant; pollutant; soil pollutant; transport at the cellular level; Biodegradation, Environmental; Biological A
DOI:
10.1007/398_2016_7
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84995593681&doi=10.1007%2f398_2016_7&partnerID=40&md5=2b8c3e1eec26e46ee84e5548474016c9
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84995593681&doi=10.1007%2f398_2016_7&partnerID=40&md5=2b8c3e1eec26e46ee84e5548474016c9
Affiliations Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude, 4113, Hannover, Germany; Defence Research Laboratory, DRDO, Post Bag 2, Tezpur, Assam, India; Department of Radiochemistry and Applied Ecology, Physical Technology Institute, Ural Federal University, Mira str., 19, Ekaterinburg, Russian Federation
Author Keywords Caesium; Metal transporters; Radio-phytoremediation; Radionuclide; Radium; Rhizosphere; Uranium
Chemicals/CAS Radioactive Pollutants; Soil Pollutants, Radioactive
References Albrecht, A., Schultze, U., Liedgens, M., Flühler, H., Frossard, E., Incorporating soil structure and root distribution into plant uptake models for radionuclides: Toward a more physically based transfer model (2002) J Environ Radioact, 59, pp. 329-350; Anderson, T.A., Kruger, E.L., Coats, J.R., Enhanced degradation of a mixture of three herbicides in the rhizosphere of a herbicide-tolerant plant (1994) Chemosphere, 28, pp. 1551-1557; Brenner, D.J., Hall, E.J., Computed tomography—an increasing source of radiation exposure (2007) New Engl J Med, 357, pp. 2277-2284; Broadley, M.R., Willey, N.J., Differences in root uptake of radiocaesium by 30 plant taxa (1997) Environ Pollut, 95, pp. 311-317; Burd, G.I., Dixon, D.G., Glick, B.R., A plant growth-promoting bacterium that decreases nickel toxicity in seedlings (1998) Appl Environ Microbiol, 64, pp. 3663-3668; Buysse, J., Van De Brande, K., Merckx, R., Genotypic differences in the uptake and distribution of radiocaesium in plants (1996) Plant Soil, 178, pp. 265-271; Chakraborty, S.R., Azim, R., Rahman, A., Sarker, R., Radioactivity concentrations in soil and transfer factors of radionuclides from soil to grass and plants in the Chittagong city of Bangladesh (2013) J Phys Sci, 24, pp. 95-113; Chatterjee, S., Datta, S., Mallick, P.H., Mitra, A., Veer, V., Mukhopadhyay, S.K., Use of wetland plants in bioaccumulation of heavy metals (2013) Plant Based Remediation Processes, Soil Biology, 35. , Gupta DK, Springer, Berlin Heidelberg; Chatterjee, S., Mitra, A., Datta, S., Veer, V., Phytoremediation protocols: An overview (2013) Plant Based Remediation Processes, Soil Biology, 35. , Gupta DK, Springer, Berlin Heidelberg; Chatterjee, S., Singh, L., Chattopadhyay, B., Datta, S., Mukhopadhyay, S.K., A study on the waste metal remediation using floriculture at East Calcutta Wetlands, a Ramsar site in India (2012) Environ Monit Assess, 184, pp. 5139-5150; Clausnitzer, V., Hopmans, J.W., Simultaneous modelling of transient three dimensional root growths and soil water flow (1994) Plant Soil, 164, pp. 299-314; Collander, R., Selective absorption of cations by higher plants (1941) Plant Physiol, 16, pp. 691-720; Comans, R., Hockley, D.E., Kinetics of cesium sorption on illite (1992) Geochim Cosmochim Acta, 56, pp. 1157-1164; Cunningham, S.D., Erson, T.A., Schwab, P., Hsu, F.C., Phytoremediation of soils contaminated with organic pollutants (1996) Adv Agron, 56, pp. 55-114; Dalcorso, G., Farinati, S., Furini, A., Regulatory networks of cadmium stress in plants (2010) Plant Signal Behav, 5, pp. 1-5; Davies, F.T., Jr., Puryear, J.D., Newton, R.J., Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus) (2001) J Plant Physiol, 158, pp. 777-786; Din, K.S., Harb, S., Abbady, A., Saad, N., (2010) The Distribution of the Radionuclides Ra-226, , http://www.rphysp.com/s7/distribution.pdf, Th-232 and K-40 in various parts of the Alfalfa plant. Tenth radiation physics and protection conference, 27-30 November, Nasr City-Cairo, Egypt; Dubey, R.S., Metal toxicity, oxidative stress and antioxidative defense system in plants (2011) Reactive Oxygen Species and Antioxidants in Higher Plants, , Gupta SD, CRC Press, Boca Raton, FL; Dushenkov, S., Trends in phytoremediation of radionuclides (2003) Plant Soil, 249, pp. 167-175; Dushenkov, S., Mikheev, A., Prokhnevsky, A., Ruchko, M., Sorochisky, B., Phytoremediation of radiocaesium‐contaminated soil in the vicinity of Chernobyl, Ukraine (1999) Environ Sci Technol, 33, pp. 469-475; Eapen, S., Singh, S., D’Souza, S.F., Phytoremediation of metals and radionuclides (2007) Singh SN, , Tripathi RD (eds),. Springer, Germany; Ehlken, S., Kirchner, G., Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: A review (2002) J Environ Radioact, 58, pp. 97-112; Eisenbud, M., Gesell, T., Environmental radioactivity (Fourth edition) from natural (1997) Industrial and Military Sources, , Academic, USA; Favas, P., Pratas, J., Uptake of uranium by native aquatic plants: Potential for bio indication and phytoremediation. (2013) E3S Web of Conferences1.13007, , http://dx.doi.org/10.1051/e3sconf/20130113007, Article available at http://www.e3s-conferences.org or; Favas, P., Pratas, J., Varun, M., D’Souza, R., Paul, M.S., Accumulation of uranium by aquatic plants in field conditions: Prospects for phytoremediation (2014) Sci Total Environ, 470-471, pp. 993-1002; Flowers, T.J., Hajibagheri, M.A., Clipson, N., (1986) Halophytes. Quart Rev Biol, 61, pp. 313-337; Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Duff, M.C., Gorby, Y.A., Li, S., Krupka, K.M., Reduction of U(VI) in goethite (alpha-FeOOH) suspensions by a dissimilatory metal-reducing bacterium (2000) Geochim Cosmochim Acta, 64, pp. 3085-3098; Frissel, M.J., An update of the recommended soil-to-plant transfer factors of Sr-90, Cs-137 and transuranic. (1992) International Union of Radio Ecologists (Ed) Viiith Report of the Working Group Soil To-Plant Transfer Factors, pp. 16-25. , Balen, Belgium; Fukuda, S., Iwamoto, K., Atsumi, M., Yokoyama, A., Nakayama, T., Ishida, K., Inouye, I., Shiraiwa, Y., Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment: A bioremediation strategy (2014) J Plant Res, 127, pp. 79-89; Gast, C.H., Jansen, E., Bierling, J., Haanstra, L., Heavy metals in mushrooms and their relationship with soil characteristics (1988) Chemosphere, 17, pp. 789-799; Gerten, D.S., Schaphoff, S., Haberlandt, U., Lucht, W., Sitch, S., Terrestrial vegetation and water balance-hydrological evaluation of a dynamic global vegetation model (2004) J Hydrol, 286, pp. 249-270; Gupta, D.K., (2013) Plant Based Remediation Process, , Springer, Germany. ISBN 978-3-642-35563-9; Gupta, D.K., Sandalio, L.M., (2012) Metal Toxicity in Plants: Perception, , signaling and remediation. Springer, Germany. ISBN 978-3-642-22080-7; Gupta, D.K., Huang, H.G., Corpas, F.J., Lead tolerance in plants: Strategies for phytoremediation (2013) Environ Sci Pollut Res, 20, pp. 2150-2161; Gupta, D.K., Chatterjee, S., Datta, S., Veer, V., Walther, C., Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals (2014) Chemosphere, 108, pp. 134-144; Gupta, D.K., Walther, C., (2014) Radionuclide Contamination and Remediation through Plants, , Springer, Germany. ISBN 978-3-319-07664-5; Hall, J.L., Cellular mechanism for heavy metal detoxification and tolerance (2002) J Exp Bot, 53, pp. 1-11; Hegazy, A.K., Afifi, S.Y., Alatar, A.A., Alwathnani, H.A., Emam, M.H., Soil characteristics influence the radionuclide uptake of different plant species (2013) Chem Ecol, 29, pp. 255-269; Hu, N., Ding, D., Li, G., Zheng, J., Li, L., Zhao, W., Wang, Y., Vegetation composition and 226Ra uptake by native plant species at a uranium mill tailings impoundment in South China (2014) J Environ Radioact, 129, pp. 100-106; Huang, J., Zhang, Y., Peng, J.S., Zhong, C., Yi, H.Y., Ow, D.W., Gong, J.M., Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis (2012) Plant Physiol, 158, pp. 1779-1788; Huang, J.W., Blaylock, M.J., Kapulnik, Y., Ensley, A.D., Phytoremediation of uraniumcontaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants (1998) Environ Sci Technol, 32, pp. 2004-2008; Huhle, B., Heilmeier, H., Merkel, B., Potential of Brassica juncea and Helianthus annuus in phytoremediation for uranium (2008) Mining and Hydrogeology, pp. 307-318. , Merkel BJ, Hasche-Berger A; (1989) Clean-Up of Large Areas Contaminated as a Result of a Nuclear Accident., , IAE (International Atomic Energy), Technical reports series no. 300; (2002) Non-Technical Factors Impacting on the Decision Making Processes in Environmental Remediation, , IAEA (International Atomic Energy Agency), IAEA-TECDOC-1279. IAEA, Vienna; (2014) The Environmental Behaviour of Radium: Revised Edition, , IAEA (International Atomic Energy Agency), technical reports. Series no 476. IAEA, Vienna; Kalin, M., Kießig, G., Küchler, A., Ecological water treatment processes for underground uranium mine water: Progress after three years of operating a constructed wetland (2002) Uranium in the Aquatic Environment. Proceedings of the International Conference Uranium Mining and Hydrogeology III and the International Mine Water Association Symposium, Freiberg, p. 587. , Merkel BJ, Planer-Friedrich B, Wolkersdorfer C, Germany, 15-21, September 2002, Springer Verlag, Berlin, Heidelberg, New York; Kamei-Ishikawaa, N., Itob, A., Tagamic, K., Umitaa, T., Fate of radiocesium in sewage treatment process released by the nuclear accident at Fukushima (2013) Chemosphere, 93, pp. 689-694; Kang, D.J., Seo, Y.J., Saito, T., Suzuki, H., Ishii, Y., Uptake and translocation of cesium-133 in napier grass (Pennisetum purpureum Schum.) under hydroponic conditions (2012) Ecotoxicol Environ Saf, 82, pp. 122-126; Kanter, U., Hauser, A., Michalke, B., Draxl, S., Schaffner, A.R., Caesium and strontium accumulation in shoots of Arabidopsis thaliana: Genetic and physiological aspects (2010) J Exp Bot, 61, pp. 3995-4009; Koarashi, J., Moriya, K., Atarashi-Andoh, M., Matsunaga, T., Fujita, H., NagaokaM(2012) Retention of potentially mobile radiocesium in forest surface soils affected by the Fukushima nuclear accident (2012) Sci Rep, p. 2; Kobayashi, D., Nozomi, N., Hisamatsu, S., Yamagami, M., At KUP/HAK/KT9, a K? Transporter from Arabidopsis thaliana, mediates Cs? Uptake in Escherichia coli (2010) Biosci Biotechnol Biochem, 74, pp. 203-205; Kohman, T.P., Proposed new word: Nuclide (1947) Am J Phys, 15, pp. 356-357; Krämer, U., Talke, I.N., Hanikenne, M., Transition metal transport (2007) FEBS Lett, 581, pp. 2263-2272; Kunze, C., Kießig, G., Küchler, A., Management of passive biological water treatment systems for mine effluents (2007) Advanced Science and Technology for Biological Decontamination of Sites Affected by Chemical and Radiological Nuclear Agents, , Marmiroli N, Borys S, Marmiroli M, Springer, Germany; Landmeyer, J.E., (2011) Introduction to Phytoremediation of Contaminated Groundwater, , Springer, London; Lasat, M.M., Phytoextraction of toxic metals: A review of biological mechanisms (2002) J Environ Qual, 31, pp. 109-120; Lasat, M.M., Ebbs, S.D., Kochian, L.V., Potential for phytoextraction of 137Cs from contaminated soils (1997) Plant Soil, 195, pp. 99-106; Lasat, M.M., Ebbs, S.D., Kochian, L.V., Phytoremediation of a radiocaesium‐contaminated soil: Evaluation of caesium‐137 bioaccumulation in shoots of three plant species (1998) J Environ Qual, 27, pp. 165-169; Leduc, D.L., Terry, N., Phytoremediation of toxic trace elements in soil and water (2005) J Ind Microbiol Biotechnol, 32, pp. 514-520; Liu, C.X., Gorby, Y.A., Zachara, J.M., Fredrickson, J.K., Brown, C.F., Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria (2002) Biotechnol Bioengg, 80, pp. 637-649; Lone, M.I., He, Z.H., Stoffella, J., Yang, X., Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives (2008) J Zhejiang Univ Sci B, 9, pp. 210-220; Lorenz, S.E., Hamon, R.E., McGrath, S.P., Holm, P.E., Christensen, T.H., Applications of fertilizer cations affect cadmium and zinc concentrations in soil solutions and uptake by plants (1994) Eur J Soil Sci, 45, pp. 159-165; Macek, T., Mackova, M., Kas, J., Exploitation of plants for the removal of organics in environmental remediation (2000) Biotechnol Adv, 18, pp. 23-34; Manara, A., Plant responses to heavy metal toxicity (2012) Plants and Heavy Metals, pp. 27-53. , Furini A, Springer briefs in biometals. Springer, New York; Markich, S.J., Uranium speciation and bioavailability in aquatic systems: An overview (2002) Sci World J, 2, pp. 707-729; Marques, A., Rangel, A., Castro, P., Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology (2009) Crit Rev Environ Sci Technol, 39, pp. 622-654; Marschner, H., (1995) Mineral Nutrition for Higher Plants, , 2nd edn. Academic Press and Harcourt Brace and Co., London-San Diego-New York-Boston-Sydney-Tokyo-Toronto; Meagher, R.B., Phytoremediation of toxic elemental and organic pollutants (2000) Curr Opin Plant Biol, 3, pp. 153-162; Menzel, R.G., Competitive uptake by plants of potassium, rubidium, cesium, and calcium, strontium, barium from soils (1954) Soil Sci, 77, pp. 419-426; Meyer, J.M., Pyoverdines: Pigments siderophores and potential taxonomic markers of fluorescent Pseudomonas species (2000) Arch Microbiol, 174, pp. 135-142; Mimura, H., Saito, M., Akiba, K., Onodera, Y., Selective uptake of cesium by ammonium molybdophosphate (AMP)-calcium alginate composites (2001) J Nucl Sci Technol, 38, pp. 872-878; Mkandawire, M., Dudel, E.G., Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany (2005) Sci Total Environ, 336, pp. 81-89; Napier, B.A., Krupka, K.M., Valenta, M.M., Gilmore, T.J., (2005) Soil and Groundwater Sample Characterization and Agricultural Practices for Assessing Food Chain Pathways in Biosphere Model, , U.S. Nuclear Regulatory Commission, Washington, DC, NUREG/CR-6881; Napier, B.A., Fellows, R.J., Krupka, K.M., (2007) Soil-To-Plant Concentration Ratios for Assessing Food Chain Pathways in Biosphere Models, , U.S. Nuclear Regulatory Commission, Washington, DC, NUREG/CR-6941; Napier, B.A., Fellows, R.J., Krupka, K.M., (2012) Soil-To-Plant Concentration Ratios for Assessing Food Chain Pathways in Biosphere Models, , U.S. Nuclear Regulatory Commission, Washington, DC, NUREG/CR-7120; Nisbet, A.F., Woodman, R., Soil-to-plant transfer factors for radiocesium and radiostrontium in agricultural systems (2000) Health Phys, 78, pp. 279-288; Nishida, S., Mizuno, T., Obata, H., Involvement of histidine-rich domain of ZIP family transporter TjZNT1 in metal ion specificity (2008) Plant Physiol Biochem, 46, pp. 601-606; Nishita, H., Steen, A.J., Larson, K.H., Release of strontium-90 and cesium-137 from vina loam upon prolonged cropping (1958) Soil Sci, 86, pp. 195-201; Padmavathiamma, P.K., Li, L.Y., Phytoremediation technology: Hyper-accumulation metals in plants (2007) Water Air Soil Pollut, 184, pp. 105-126; Payne, R.B., Gentry, D.A., Rapp-Giles, B.J., Casalot, L., Wall, J.D., Uranium reduction by Desulfovibrio desulfuricans strain G20 and a cytochrome C3 mutant (2002) Appl Environ Microbiol, 68, pp. 3129-3132; Prasad, M., (2011) A State-Of-The-Art Report on Bioremediation, , http://www.moef.nic.in/downloads/public-information/BioremediationBook.pdf, its applications to contaminated sites in India. Ministry of Environment & Forests, Government of India; Pratas, J., Favas, P., Paulo, C., Rodrigues, N., Prasad, M., Uranium accumulation by aquatic plants from uranium-contaminated water in Central Portugal (2012) Int J Phytorem, 14, pp. 221-234; Rai, U.N., Pal, A., Toxic metals and phytoremediation. Enviro News, Newsletter of International Society of Environmental Botanists (1999) India, 5 (4); Rauser, W.E., Structure and function of metal chelators produced by plants: The case for organic acids, amino acids, phytin and metallothioneins (1999) Cell Biochem Biophys, 31, pp. 19-48; Reeves, R.D., Hyperaccumulation of trace elements by plants (2006) Phytoremediation of Metal-Contaminated Soils, , Morel JL, Echevarria G, Goncharova N, NATO Science series IV: Earth and Environmental Sciences. Springer, New York; Robson, A.D., Pitman, J.B., Interactions between nutrients in higher plants (1983) Inorganic Plant Nutrition, pp. 147-180. , Läuchli A, Bieleski RL, New York: Springer, Encyclopedia of Plant Physiology, 1; Salt, D.E., Kato, N., Kräme, U., Smith, R.D., Raskin, I., The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi (2000) Phytoremediation of Contaminated Soil and Water, , Terry N, Banuelos G, CRC Press LLC, Boca Raton; Schnoor, J.L., Licht, L.A., McCutcheon, S.C., Wolfe, N.L., Carreira, L.H., Phytoremediation of organic and nutrient contaminants (1995) Environ Sci Technol, 29, pp. 318-323; Sheppard, S.C., Toxicants in the environment: Bringing radioecology and ecotoxicology together (2001) Radioactive Pollutants: Impact on the Environment., , Brechignac F, Howard BJ, EDP Sciences, Les UlisCedex A, France; Simon, S.L., Ibrahim, S.A., (1990) Biological Uptake of Radium by Terrestrial Plants, 1, pp. 545-599. , The environmental behaviour of radium. IAEA, Vienna, pp, Technical reports series no. 310; Smolders, E., Kiebooms, L., Buysse, J., Merckx, R., 137Cs uptake in spring wheat (Triticum aestivum L. Cv. Tonic) at varying K supply. II: The effect in solution culture (1996) Plant Soil, 18, pp. 211-220; Soudek, P., Tykva, R., Vaková, R., Vank, T., Accumulation of radioiodine from aqueous solution by hydroponically cultivated sunflower (Helianthus annuus L.) (2006) Environ Exp Bot, 57, pp. 220-225; Soudek, P., Petrová, S., Benesová, D., Tykva, R., Vanková, R., Vanek, T., Comparison of226Ra nuclide from soil by three woody species Betula pendula, Sambucus nigra and Alnus glutinosa during the vegetation period (2007) J Environ Radioact, 97, pp. 76-82; Soudek, P., Tykva, R., Vank, T., Laboratory analyses of Cs uptake by sunflower, reed and poplar (2004) Chemosphere, 55, pp. 1081-1087; Stewart, B.D., (2008) The Dominating Influence of Calcium on the Biogeochemical Fate of Uranium, , Ph.D. thesis, Stanford University, USA; Tang, S., Willey, N.J., Uptake of 134Cs by four species from the Asteraceae and two varieties from the Chenopodiaceae grown in two types of Chinese soil (2003) Plant Soil, 250, pp. 75-81; Tangahu, B.V., Abdullah, S., Basri, H., Idris, M., Anuar, N., Mukhlisin, M., A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation (2011) Int J Chem Eng, p. 939161; Tensho, K., Yeh, K.L., Mitsui, S., The uptake of strontium and cesium by plants from soil with special reference to the unusual cesium uptake by lowland rice and its mechanism (1961) Soil Sci Plant Nutr, 6, pp. 176-183; Trapp, S., Matthies, M., Scheunert, I., Topp, E.M., Modelling the bioconcentration of organic chemicals in plants (1990) Environ Sci Technol, 24, pp. 1246-1252; (2003) Literature Review and Assessment of Plant and Animal Transfer Factors Used in Performance Assessment Modelling, , USNRC: U.S. Nuclear Regulatory Commission, Washington, DC, Pacific Northwest National Laboratory. NUREG/CR-6825, PNNL-14321; Valcke, E., Cremers, A., Sorption-desorption dynamics of radiocesium in organic matter soils (1994) Sci Total Environ, 157, pp. 275-283; Voronina, A.V., Blinova, M.O., Semenischev, V.S., Gupta, D.K., Returning lands, contaminated as a result of radiation accidents, to farming use (2015) J Environ Radioact, 144, pp. 103-112; Walther, C., Gupta, D.K., (2015) Chemistry of Radionuclides in the Environment: Influence of Chemical Speciation and Plant Uptake on Radionuclide Migration, , Springer, Germany. ISBN 978-3-319-22170-0; Wenzel, W.W., Unterbrunner, R., Sommer, P., Sacco, P., Chelate assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments (2003) Plant Soil, 249, pp. 83-89; Yamashita, J., Enomoto, T., Yamada, M., Ono, T., Hanafusa, T., Nagamatsu, T., Shoji Sonoda, S., Yamamoto, Y., Estimation of soil-to-plant transfer factors of radiocesium in 99 wild plant species grown in arable lands 1 year after the Fukushima 1 Nuclear Power Plant accident (2014) J Plant Res, 127, pp. 11-22; Zhu, Y.G., Shaw, G., Soil contamination with radionuclides and potential remediation (2000) Chemosphere, 41, pp. 121-128; Zhu, Y.G., Smolders, E., Plant uptake of radiocaesium: A review of mechanisms, regulation and application (2000) J Exp Bot, 51, pp. 1635-1645
Correspondence Address Gupta, D.K.; Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude, 4113, Germany; email: guptadk1971@gmail.com
Publisher Springer New York LLC
CODEN RCTOE
PubMed ID 27300012
Language of Original Document English
Abbreviated Source Title Rev. Environ. Contam. Toxicol.
Source Scopus