Traveling wave solutions for the hyperbolic Cahn-Allen equation / Nizovtseva I. G.,Galenko P. K.,Alexandrov D. V. // CHAOS SOLITONS \& FRACTALS. - 2017. - V. 94, l. . - P. 75-79.

ISSN/EISSN:
0960-0779 / 1873-2887
Type:
Article
Abstract:
Traveling wave solutions of the hyperbolic Cahn-Allen equation are obtained using the first integral method, which follows from well-known Hilbert-Nullstellensatz theorem. The obtained complete class of traveling waves consists of continual and singular solutions. Continual solutions are represented by tanh-profiles and singular solutions exhibit unbounded discontinuity at the origin of coordinate system. With the neglecting inertia of the dynamical system, the obtained traveling waves include the previous solutions for the parabolic Cahn-Allen equation. (C) 2016 Elsevier Ltd. All rights reserved.
Author keywords:
Traveling wave; Cahn-Allen equation; First integral method; Division theorem NONLINEAR EVOLUTION-EQUATIONS; 1ST INTEGRAL METHOD; DE-VRIES EQUATION; BINARY ALLOY; TANH METHOD; MOTION; SYSTEM
DOI:
10.1016/j.chaos.2016.11.010
Web of Science ID:
ISI:000392893900010
Соавторы в МНС:
Другие поля
Поле Значение
Month JAN
Publisher PERGAMON-ELSEVIER SCIENCE LTD
Address THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
Language English
EISSN 1873-2887
Keywords-Plus NONLINEAR EVOLUTION-EQUATIONS; 1ST INTEGRAL METHOD; DE-VRIES EQUATION; BINARY ALLOY; TANH METHOD; MOTION; SYSTEM
Research-Areas Mathematics; Physics
Web-of-Science-Categories Mathematics, Interdisciplinary Applications; Physics, Multidisciplinary; Physics, Mathematical
Author-Email nizovtseva.irina@gmail.com
ResearcherID-Numbers Alexandrov, Dmitri/D-2516-2016
ORCID-Numbers Alexandrov, Dmitri/0000-0002-6628-745X
Funding-Acknowledgement Russian Science Foundation {[}16-11-10095]; Alexander von Humboldt Foundation {[}1160779]; German Research Foundation (DFG) {[}RE 1261/8-2]
Funding-Text The authors acknowledge the support from the Russian Science Foundation (project no. 16-11-10095). I.N. specially acknowledges the support of Alexander von Humboldt Foundation (ID 1160779). P.G. specially acknowledges the support from German Research Foundation (DFG Project RE 1261/8-2).
Number-of-Cited-References 32
Usage-Count-Last-180-days 1
Usage-Count-Since-2013 2
Journal-ISO Chaos Solitons Fractals
Doc-Delivery-Number EJ0JG