Formation of self-organized domain structures with charged domain walls in lithium niobate with surface layer modified by proton exchange / Shur V.Ya., Akhmatkhanov A.R., Chuvakova M.A., Dolbilov M.A., Zelenovskiy P.S., Lobov A.I. // Journal of Applied Physics. - 2017. - V. 121, l. 10.

ISSN:
00218979
Type:
Article
Abstract:
We have studied the self-organized dendrite domain structures appeared as a result of polarization reversal in the uniform field in lithium niobate single crystals with the artificial surface layer created by proton exchange. We have revealed the self-organized sub-micron scale dendrite domain patterns consisting of domain stripes oriented along the X crystallographic directions separated by arrays of dashed residual domains at the surface by scanning probe microscopy. Raman confocal microscopy allowed visualizing the quasi-regular dendrite domain structures with similar geometry in the vicinity of both polar surfaces. The depth of the structure was about 20 μm for Z+ polar surface and 70 μm for Z− one. According to the proposed mechanism, the dendrite structure formation at the surface was related to the ineffective screening of the residual depolarization field. The computer simulation of the structure formation based on the cellular automata model with probabilistic switching rule proved the eligibility of the proposed scheme, the simulated dendrite domain patterns at various depths being similar to the experimental ones. © 2017 Author(s).
Author keywords:
Index keywords:
Niobium compounds; Scanning probe microscopy; Single crystals; Artificial surfaces; Cellular automata modeling; Computer simulation of the structures; Crystallographic directions; Dendrite structure f
DOI:
10.1063/1.4978014
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015449151&doi=10.1063%2f1.4978014&partnerID=40&md5=3ba4ff83ec30eea7720391d2a6e2f2b9
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 104101
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015449151&doi=10.1063%2f1.4978014&partnerID=40&md5=3ba4ff83ec30eea7720391d2a6e2f2b9
Affiliations School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federation
References Newnham, R.E., Miller, C.S., Cross, L.E., Cline, T.W., (1975) Phys. Status Solidi, 32, p. 69; Fejer, M.M., Magel, G.A., Jundt, D.H., Byer, R.L., (1992) IEEE J. Quantum Electron., 28, p. 2631; Shur, V.Ya., (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, pp. 622-669. , edited by Z-G. Ye (Woodhead Publishing); Shur, V.Ya., (2010) Ferroelectrics, 399, p. 97; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Fejer, M.M., Byer, R.L., (2001) Ferroelectrics, 257, p. 191; Byer, R.L., (1997) J. Nonlinear Opt. Phys. Mater., 6, p. 549; Volk, T., Wöhlecke, M., (2008) Lithium Niobate, , Springer, Berlin, Heidelberg; Wada, S., (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, pp. 266-303. , Elsevier; Wada, S., Suzuki, S., Noma, T., Suzuki, T., Osada, M., Kakihana, M., Park, S.-E., Shrout, T.R., (1999) Jpn. J. Appl. Phys., Part 1, 38, p. 5505; Seidel, J., Martin, L.W., He, Q., Zhan, Q., Chu, Y.-H.Y.-H., Rother, A., Hawkridge, M.E., Ramesh, R., (2009) Nat. Mater., 8, p. 229; Seidel, J., (2012) J. Phys. Chem. Lett., 3, p. 2905; Barth, J.V., Costantini, G., Kern, K., (2005) Nature, 437, p. 671; Shur, V.Ya., (2006) J. Mater. Sci., 41, p. 199; Fridkin, V.M., (1980) Ferroelectric Semiconductors, , Consultants Bureau, New York; Lambeck, P.V., Jonker, G.H., (1986) J. Phys. Chem. Solids, 47, p. 453; Shur, V.Ya., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., (2011) J. Appl. Phys., 110, p. 52013; Chuvakova, M.A., Vaskina, E.M., Akhmatkhanov, A.R., Baturin, I.S., Shur, V.Ya., (2016) Ferroelectrics, 496, p. 92; Dolbilov, M.A., Shur, V.Ya., Shishkina, E.V., Angudovich, E.S., Ushakov, A.D., Baldi, P., De Micheli, M.P., (2013) Ferroelectrics, 442, p. 82; Roelofs, M.G., Morris, P.A., Bierlein, J.D., (1991) J. Appl. Phys., 70, p. 720; Korkishko, Y.N., Fedorov, V.A., (1999) Ion Exchange in Single Crystals for Integrated Optics and Optoelectronics, , Cambridge International Science Publishing; Vohra, S.T., Mickelson, A.R., Asher, S.E., (1989) J. Appl. Phys., 66, p. 5161; El Hadi, K., Sundheimer, M., Aschieri, P., Baldi, P., De Micheli, M.P., Ostrowsky, D.B., Laurell, F., (1997) J. Opt. Soc. Am. B, 14, p. 3197; Chanvillard, L., Aschiéri, P., Baldi, P., Ostrowsky, D.B., De Micheli, M., Huang, L., Bamford, D.J., (2000) Appl. Phys. Lett., 76, p. 1089; De Micheli, M.P., (2006) Ferroelectrics, 340, p. 49; Jackel, J.L., (1982) Appl. Phys. Lett., 41, p. 607; De Micheli, M., Papuchon, M., Botineau, J., Neveu, S., Sibillot, P., Ostrowsky, D.B., (1983) Opt. Lett., 8, p. 114; Dolbilov, M.A., Shur, V.Ya., Shishkin, E.I., Sarmanova, M.F., Nikolaeva, E.V., Tascu, S., Baldi, P., De Micheli, M.P., (2008) Ferroelectrics, 374, p. 14; Akhmatkhanov, A.R., Chuvakova, M.A., Vaskina, E.M., Shur, V.Ya., (2015) Ferroelectrics, 476, p. 57; Myers, L.E., Eckardt, R.C., Fejer, M.M., Byer, R.L., Bosenberg, W.R., Pierce, J.W., (1995) J. Opt. Soc. Am. B, 12, p. 2102; Shur, V.Ya., Neradovskiy, M.M., Dolbilov, M.A., Lobov, A.I., Zelenovskiy, P.S., Ushakov, A.D., Ushakova, E.S., De Micheli, M.P., (2015) Ferroelectrics, 476, p. 146; Shur, V.Ya., Kosobokov, M.S., Mingaliev, E.A., Karpov, V.R., (2015) AIP Adv., 5, p. 107110; Shur, V.Ya., Alikin, D.O., Ievlev, A.V., Dolbilov, M.A., Sarmanova, M.F., Gavrilov, N.V., (2012) IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59, p. 1934; Miller, R., Weinreich, G., (1960) Phys. Rev., 117, p. 1460
Correspondence Address Shur, V.Ya.; School of Natural Sciences and Mathematics, Ural Federal UniversityRussian Federation; email: vladimir.shur@urfu.ru
Publisher American Institute of Physics Inc.
CODEN JAPIA
Language of Original Document English
Abbreviated Source Title J Appl Phys
Source Scopus