Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals / Chezganov D.S., Shur V.Ya., Vlasov E.O., Gimadeeva L.V., Alikin D.O., Akhmatkhanov A.R., Chuvakova M.A., Mikhailovskii V.Yu. // Applied Physics Letters. - 2017. - V. 110, l. 8.

ISSN:
00036951
Type:
Article
Abstract:
We experimentally compared the shapes and sizes of isolated domains created by the focused ion beam irradiation in the lithium niobate crystals doped by MgO with polar surface covered by dielectric (resist) layer and those with free surface. We attributed the larger sizes of isolated domains in the samples covered by the resist layer to ion localization in the resist. We revealed a change in the domain shape as a function of increasing dose and explained it in terms of kinetic approach taking into account the modification of the surface layers by ion irradiation. We applied the obtained knowledge for 1D and 2D periodical poling using ion beam. Finally, we created the 2D square 1-μm-period array of isolated domains with radius about 300 nm and maximal depth of all domains in the array up to 100 μm as well as the 1D pattern of through stripe domains with 2-μm-period in 1-mm-thick wafer. © 2017 Author(s).
Author keywords:
Index keywords:
Ion bombardment; Ions; Irradiation; Niobium compounds; Single crystals; Artificial surfaces; Dielectric layer; Domain patterning; Kinetic approach; Lithium niobate crystal; Mgo doped lithium niobate;
DOI:
10.1063/1.4977043
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013822059&doi=10.1063%2f1.4977043&partnerID=40&md5=4f2b9e832e01b0322506d8182e3c191a
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 082903
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013822059&doi=10.1063%2f1.4977043&partnerID=40&md5=4f2b9e832e01b0322506d8182e3c191a
Affiliations School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federation; Labfer Ltd., Ekaterinburg, Russian Federation; Research Park, IRC Nanotechnology, St. Petersburg State University, St. Petersburg, Russian Federation
Funding Details 1366.2014/236, Minobrnauka, Ministry of Education and Science of the Russian Federation; RFBR, Russian Foundation for Basic Research
Funding Text The authors would like to acknowledge P.S. Zelenovskiy for the CRM measurements. The equipment of the Ural Center for Shared Use “Modern nanotechnology” UrFU and IRC Nanotechnology, Research Park of SPbU, was used. The research was made possible in part by RFBR (15-32-21102-mol_a_ved), by the Government of the Russian Federation (Act 211, Agreement 02.A03.21.0006), and by the President of Russian Federation grant for young scientists (Contract 14.Y30.16.8441-MК). V.S. acknowledges the financial support within the State Task from the Ministry of Education and Science of the Russian Federation (Project No. 1366.2014/236).
References Nalwa, H.S., (2001) Handbook of Advanced Electronic and Photonic Materials and Devices, , Academic Press, San Diego, California; Byer, R.L., (1997) J. Nonlinear Opt. Phys. Mater., 6, p. 549; Berger, V., (1998) Phys. Rev. Lett., 81, p. 4136; Broderick, N.G.R., Ross, G.W., Offerhaus, H.L., Richardson, D.J., Hanna, D.C., (2000) Phys. Rev. Lett., 84, p. 4345; Shur, V.Ya., (2006) J. Mater. Sci., 41, p. 199; Furukawa, Y., Kitamura, K., Takekawa, S., Niwa, K., Hatano, H., (1998) Opt. Lett., 23, p. 1892; Shur, V.Ya., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., (2000) Ferroelectrics, 236, p. 129; Ishizuki, H., Shoji, I., Taira, T., (2003) Appl. Phys. Lett., 82, p. 4062; Kuroda, A., Kurimura, S., Uesu, Y., (1996) Appl. Phys. Lett., 69, p. 1565; Kang, J.U., Ding, Y.J., Burns, W.K., Melinger, J.S., (1997) Opt. Lett., 22, p. 862; Gu, X., Korotkov, R.Y., Ding, Y.J., Kang, J.U., Khurgin, J.B., (1998) J. Opt. Soc. Am. B, 15, p. 1561; Stivala, S., Busacca, A.C., Curcio, L., Oliveri, R.L., Riva-Sanseverino, S., Assanto, G., (2010) Appl. Phys. Lett., 96, p. 111110; Harris, S.E., (1966) Appl. Phys. Lett., 9, p. 114; Landry, G.D., Maldonado, T.A., (1997) Opt. Lett., 22, p. 1400; Landry, G.D., Maldonado, T.A., (1999) J. Light. Technol., 17, p. 316; Gallo, K., Assanto, G., Parameswaran, K.R., Fejer, M.M., (2001) Appl. Phys. Lett., 79, p. 314; Zhou, Z., Shi, J., Chen, X., (2009) Appl. Phys. B, 96, p. 787; Khurgin, J.B., (2005) Phys. Rev. A, 72, p. 023810; Suzuki, T., Suhara, T., (2013) Jpn. J. Appl. Phys., 52, p. 100204; Mizuuchi, K., Morikawa, A., Sugita, T., Yamamoto, K., (2003) Jpn. J. Appl. Phys., Part 2, 42, p. L90; Busacca, A.C., Sones, C.L., Apostolopoulos, V., Eason, R.W., Mailis, S., (2002) Appl. Phys. Lett., 81, p. 4946; Busacca, A.C., Sones, C.L., Eason, R.W., Mailis, S., (2003) Ferroelectrics, 296, p. 91; Gruverman, A., Auciello, O., Tokumoto, H., (1998) Annu. Rev. Mater. Sci., 28, p. 101; Terabe, K., Nakamura, M., Takekawa, S., Kitamura, K., Higuchi, S., Gotoh, Y., Cho, Y., (2003) Appl. Phys. Lett., 82, p. 433; Ievlev, A.V., Jesse, S., Morozovska, A.N., Strelcov, E., Eliseev, E.A., Pershin, Y.V., Kumar, A., Kalinin, S.V., (2013) Nat. Phys., 10, p. 59; Ito, H., Takyu, C., Inaba, H., (1991) Electron. Lett., 27, p. 1221; Nutt, A.C.G., Gopalan, V., Gupta, M.C., (1992) Appl. Phys. Lett., 60, p. 2828; Restoin, C., Darraud-Taupiac, C., Decossas, J.-L., Vareille, J.-C., Couderc, V., Barthélémy, A., Martinez, A., Hauden, J., (2001) Appl. Opt., 40, p. 6056; He, J., Tang, S.H., Qin, Y.Q., Dong, P., Zhang, H.Z., Kang, C.H., Sun, W.X., Shen, Z.X., (2003) J. Appl. Phys., 93, p. 9943; Kokhanchik, L.S., Palatnikov, M.N., Shcherbina, O.B., (2011) Phase Transitions, 84, p. 797; Kokhanchik, L.S., Volk, T.R., (2013) Appl. Phys. B, 110, p. 367; Mateos, L., Bausá, L.E., Ramírez, M.O., (2014) Opt. Mat. Express, 4, p. 1077; Shur, V.Ya., Chezganov, D.S., Smirnov, M.M., Alikin, D.O., Neradovskiy, M.M., Kuznetsov, D.K., (2014) Appl. Phys. Lett., 105, p. 52908; Volk, T.R., Kokhanchik, L.S., Gainutdinov, R.V., Bodnarchuk, Y.V., Shandarov, S.M., Borodin, M.V., Lavrov, S.D., Chen, F., (2015) J. Light. Technol., 33, p. 4761; Kurimura, S., Shimoya, I., Uesu, Y., (1996) Jpn J. Appl. Phys., Part 2, 35, p. L31; Mizuuchi, K., Yamamoto, K., (1993) Electron. Lett., 29, p. 2064; Li, X., Terabe, K., Hatano, H., Kitamura, K., (2005) Jpn. J. Appl. Phys., Part 2, 44, p. L1550; Li, X., Terabe, K., Hatano, H., Zeng, H., Kitamura, K., (2006) J. Appl. Phys., 100, p. 106103; Levinson, H.J., (2010) Principles of Lithography, , 3rd ed. (SPIE Press, Bellingham, Wash); Madou, M.J., (2012) Fundamentals of Microfabrication and Nanotechnology, , 3rd ed. (CRC Press, Boca Raton, FL); Sze, S.M., (2002) Semiconductor Devices, Physics and Technology, , 2nd ed. (Wiley, New York); Glickman, Y., Winebrand, E., Arie, A., Rosenman, G., (2006) Appl. Phys. Lett., 88, p. 11103; Li, X., Terabe, K., Hatano, H., Kitamura, K., (2006) J. Cryst. Growth, 292, p. 324; Shur, V.Ya., Chezganov, D.S., Akhmatkhanov, A.R., Kuznetsov, D.K., (2015) Appl. Phys. Lett., 106, p. 232902; Chezganov, D.S., Smirnov, M.M., Kuznetsov, D.K., Shur, V.Ya., (2015) Ferroelectrics, 476, p. 117; Chezganov, D.S., Vlasov, E.O., Neradovskiy, M.M., Gimadeeva, L.V., Neradovskaya, E.A., Chuvakova, M.A., Tronche, H., Shur, V.Ya., (2016) Appl. Phys. Lett., 108, p. 192903; Shur, V.Ya., Zelenovskiy, P.S., (2014) J. Appl. Phys., 116, p. 066802; Shur, V.Ya., Lobov, A.I., Shur, A.G., Kurimura, S., Nomura, Y., Terabe, K., Liu, X.Y., Kitamura, K., (2005) Appl. Phys. Lett., 87, p. 22905; Gruverman, A., Kalinin, S.V., (2006) J. Mater. Sci., 41, p. 107; Shur, V.Ya., Shishkin, E.I., Nikolaeva, E.V., Nebogatikov, M.S., Alikin, D.O., Zelenovskiy, P.S., Sarmanova, M.F., Dolbilov, M.A., (2010) Ferroelectrics, 398, p. 91; Zelenovskiy, P.S., Fontana, M.D., Shur, V.Ya., Bourson, P., Kuznetsov, D.K., (2010) Appl. Phys. A, 99, p. 741; Reyntjens, S., Puers, R., (2001) J. Micromech. Microeng., 11, p. 287; Melitz, W., Shen, J., Kummel, A.C., Lee, S., (2011) Surf. Sci. Rep., 66, p. 1; Merz, W.J., (1956) J. Appl. Phys., 27, p. 938; Shur, V.Ya., Akhmatkhanov, A.R., Baturin, I.S., Shishkina, E.V., (2012) J. Appl. Phys., 111, p. 14101; Rodriguez, B.J., Nemanich, R.J., Kingon, A., Gruverman, A., Kalinin, S.V., Terabe, K., Liu, X.Y., Kitamura, K., (2005) Appl. Phys. Lett., 86, p. 12906; Chezganov, D.S., Kuznetsov, D.K., Shur, V.Ya., (2016) Ferroelectrics, 496, p. 70; Shur, V.Ya., (2005) Nucleation Theory and Applications, pp. 178-214. , edited by J. W. P. Schmelzer (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG); Shur, V.Ya., Lobov, A.I., Shur, A.G., Rumyantsev, E.L., Gallo, K., (2007) Ferroelectrics, 360, p. 111; Shur, V.Ya., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., (2011) J. Appl. Phys., 110, p. 52013; Shishkin, E.I., Nikolaeva, E.V., Shur, V.Ya., Sarmanova, M.F., Dolbilov, M.A., Nebogatikov, M.S., Alikin, D.O., Gavrilov, N.V., (2010) Ferroelectrics, 399, p. 49; Rossnagel, S.M., Cuomo, J.J., Westwood, W.D., (1990) Handbook of Plasma Processing Technology: Fundamentals, Etching, Deposition, and Surface Interactions, , Noyes Publications, Park Ridge, NJ, USA; Townsend, P.D., Chandler, P.J., Zhang, L., (1994) Optical Effects of Ion Implantation, , Cambridge University Press, Cambridge; Chen, F., (2009) J. Appl. Phys., 106, p. 81101; Shur, V.Ya., Akhmatkhanov, A.R., Chezganov, D.S., Lobov, A.I., Baturin, I.S., Smirnov, M.M., (2013) Appl. Phys. Lett., 103, p. 242903; Shur, V.Ya., Nikolaeva, E.V., Shishkin, E.I., Chernykh, A.P., Terabe, K., Kitamura, K., Ito, H., Nakamura, K., (2002) Ferroelectrics, 269, p. 195; Shur, V.Ya., Chezganov, D.S., Nebogatikov, M.S., Baturin, I.S., Neradovskiy, M.M., (2012) J. Appl. Phys., 112, p. 104113
Correspondence Address Chezganov, D.S.; School of Natural Sciences and Mathematics, Ural Federal UniversityRussian Federation; email: chezganov.dmitry@urfu.ru
Publisher American Institute of Physics Inc.
CODEN APPLA
Language of Original Document English
Abbreviated Source Title Appl Phys Lett
Source Scopus