References |
Byer, R.L., Quasi-phase-matched nonlinear interactions and devices (1997) J Nonlinear Opt Phys Mater, 6, pp. 549-592; House, M., Townsend, P.D., An introduction to methods of periodic poling for second-harmonic generation (1995) J Phys D Appl Phys., 28, pp. 1747-1763; Myers, L.I., Eckardt, R.C., Fejer, C.C., Byer, R.L., Bosenberg, W.R., Pierce, J.W., Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3 (1995) J Opt Soc Am B., 12, pp. 2102-2116; Yamada, M., Electrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices (2000) Rev Sci Instrum., 71, pp. 4010-4016; Vya, S., Rumyantsev, E.L., Nicolaeva, E.V., Shishkin, E.I., Batchko, R.G., Fejer, M.M., Byer, R.L., Recent achievements in domain engineering in lithium niobate and lithium tantalate (2001) Ferroelectrics, 257, pp. 191-202; Shur, V.Y., Akhmatkhanov, A.R., Baturin, I.S., Micro- and nano-domain engineering in lithium niobate (2015) Appl Phys Rev., 2, p. 40604; Fejer, M.M., Magel, G.A., Jundt, D.H., Byer, R.L., Quasi-phase-matched second harmonic generation: tuning and tolerances (1992) IEEE J Quant Electr., 28, pp. 2631-2654; Aleksandrovskii, A.L., Gliko, O.A., Naumova, I.I., Pryalkin, V.I., Linear and nonlinear diffraction gratings in lithium niobate single crystals with periodically poled domain structure (1996) Kvant Elektr., 23, pp. 657-659; Müller, M., Soergel, E., Buse, K., Langrock, C., Fejer, M.M., Investigation of periodically poled lithium niobate crystals by light diffraction (2005) J Appl Phys., 97, p. 044102; Shandarov, S.M., Mandel, A.E., Smirnov, S.V., Akylbaev, T.M., Borodin, M.V., Akhmatkhanov, A.R., Vya, S., Collinear and isotropic diffraction of laser beam and incoherent light on periodically poled domain structures in lithium niobate (2016) Ferroelectrics, 496, pp. 134-142; Gopalan, V., Dierolf, V., Scrymgeour, D.A., Defect-domain wall interactions in trigonal ferroelectrics (2007) Annu Rev Mater Res., 37, pp. 449-489; Scrymgeour, D.A., Gopalan, V., Itagi, A., Saxena, A., Swart, P.J., Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate (2005) Phys Rev B., 71, p. 184110; Lee, D., Xu, H., Dierolf, V., Gopalan, V., Phillpot, S.R., Structure and energetics of ferroelectric domain walls in LiNbO3 from atomic-level simulations (2010) Phys Rev B., 82, p. 014104; Zhirnov, V.A., A contribution to the theory of domain walls in ferroelectrics (1959) Soviet Physics JETP USSR., 8, pp. 822-825; Yariv, A., Yeh, P., (1984) Optical waves in crystals, , Wiley, New York:; Dmitriev, V.G., Gurdzanyan, G.G., Nikogosyan, D.N., (1991) Handbook of Nonlinear Optical Crystals, , Springer-Verlag, Berlin:; Avakyants, L.P., Kiselev, D.F., Shchitkov, N.N., Measurement of the photoelastic coefficients of lithium niobate single crystals (1976) Sov Phys Solid State, 18, pp. 899-901; Turner, E.H., High-frequency electro-optic coefficients of lithium niobate (1966) Appl Phys Lett, 8, pp. 303-304 |