Linear diffraction of light waves in periodically poled lithium niobate crystal / Shandarov S.M., Mandel A.E., Andrianova A.V., Bolshanin G.I., Borodin M.V., Kim A.Y., Smirnov S.V., Akhmatkhanov A.R., Shur V.Y. // Ferroelectrics. - 2017. - V. 508, l. 1. - P. 49-57.

ISSN:
00150193
Type:
Article
Abstract:
Results of theoretical analysis of dielectric permittivity perturbations in lithium niobate crystal with periodically poled domain structure are presented. The deviation of periodical domain structure duty cycle from 0.5 and the electric bias field created by point defects are taken into consideration. The isotropic diffraction with many maxima is considered as a boundary problem for symmetric propagation of probing beam. The agreement between numerical analysis and experimental study of the isotropic diffraction patterns performed for laser beam polarized along domain walls and propagating along polar axis through the periodically poled domain structure confirmed the proposed theoretical model. © 2017 Taylor & Francis Group, LLC.
Author keywords:
collinear diffraction; domain structure; isotropic diffraction; lithium niobate; Periodical poling
Index keywords:
Diffraction; Domain walls; Laser beams; Lithium; Niobium compounds; Permittivity; Point defects; Collinear diffraction; Dielectric permittivities; Domain structure; Lithium niobate; Lithium niobate cr
DOI:
10.1080/00150193.2017.1287515
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017611948&doi=10.1080%2f00150193.2017.1287515&partnerID=40&md5=c08d7c9db13141a581b0f11f749d2e73
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017611948&doi=10.1080%2f00150193.2017.1287515&partnerID=40&md5=c08d7c9db13141a581b0f11f749d2e73
Affiliations Department of Electronic Devices, Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russian Federation; School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federation
Author Keywords collinear diffraction; domain structure; isotropic diffraction; lithium niobate; Periodical poling
References Byer, R.L., Quasi-phase-matched nonlinear interactions and devices (1997) J Nonlinear Opt Phys Mater, 6, pp. 549-592; House, M., Townsend, P.D., An introduction to methods of periodic poling for second-harmonic generation (1995) J Phys D Appl Phys., 28, pp. 1747-1763; Myers, L.I., Eckardt, R.C., Fejer, C.C., Byer, R.L., Bosenberg, W.R., Pierce, J.W., Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3 (1995) J Opt Soc Am B., 12, pp. 2102-2116; Yamada, M., Electrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices (2000) Rev Sci Instrum., 71, pp. 4010-4016; Vya, S., Rumyantsev, E.L., Nicolaeva, E.V., Shishkin, E.I., Batchko, R.G., Fejer, M.M., Byer, R.L., Recent achievements in domain engineering in lithium niobate and lithium tantalate (2001) Ferroelectrics, 257, pp. 191-202; Shur, V.Y., Akhmatkhanov, A.R., Baturin, I.S., Micro- and nano-domain engineering in lithium niobate (2015) Appl Phys Rev., 2, p. 40604; Fejer, M.M., Magel, G.A., Jundt, D.H., Byer, R.L., Quasi-phase-matched second harmonic generation: tuning and tolerances (1992) IEEE J Quant Electr., 28, pp. 2631-2654; Aleksandrovskii, A.L., Gliko, O.A., Naumova, I.I., Pryalkin, V.I., Linear and nonlinear diffraction gratings in lithium niobate single crystals with periodically poled domain structure (1996) Kvant Elektr., 23, pp. 657-659; Müller, M., Soergel, E., Buse, K., Langrock, C., Fejer, M.M., Investigation of periodically poled lithium niobate crystals by light diffraction (2005) J Appl Phys., 97, p. 044102; Shandarov, S.M., Mandel, A.E., Smirnov, S.V., Akylbaev, T.M., Borodin, M.V., Akhmatkhanov, A.R., Vya, S., Collinear and isotropic diffraction of laser beam and incoherent light on periodically poled domain structures in lithium niobate (2016) Ferroelectrics, 496, pp. 134-142; Gopalan, V., Dierolf, V., Scrymgeour, D.A., Defect-domain wall interactions in trigonal ferroelectrics (2007) Annu Rev Mater Res., 37, pp. 449-489; Scrymgeour, D.A., Gopalan, V., Itagi, A., Saxena, A., Swart, P.J., Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate (2005) Phys Rev B., 71, p. 184110; Lee, D., Xu, H., Dierolf, V., Gopalan, V., Phillpot, S.R., Structure and energetics of ferroelectric domain walls in LiNbO3 from atomic-level simulations (2010) Phys Rev B., 82, p. 014104; Zhirnov, V.A., A contribution to the theory of domain walls in ferroelectrics (1959) Soviet Physics JETP USSR., 8, pp. 822-825; Yariv, A., Yeh, P., (1984) Optical waves in crystals, , Wiley, New York:; Dmitriev, V.G., Gurdzanyan, G.G., Nikogosyan, D.N., (1991) Handbook of Nonlinear Optical Crystals, , Springer-Verlag, Berlin:; Avakyants, L.P., Kiselev, D.F., Shchitkov, N.N., Measurement of the photoelastic coefficients of lithium niobate single crystals (1976) Sov Phys Solid State, 18, pp. 899-901; Turner, E.H., High-frequency electro-optic coefficients of lithium niobate (1966) Appl Phys Lett, 8, pp. 303-304
Correspondence Address Mandel, A.E.; Department of Electronic Devices, Tomsk State University of Control Systems and RadioelectronicsRussian Federation; email: a_e_mandel@mail.ru
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus