References |
Shur, V.Y., Nano- and micro-domain engineering in normal and relaxor ferroelectrics (2008) Handbook of advanced dielectric, piezoelectric and ferroelectric materials. Synthesis, properties and applications, pp. 622-669. , Ye Z.-G., (ed), Cambridge: Woodhead Publishing; Volk, T., Wöhlecke, M., (2008) Lithium niobate: defects, photorefraction and ferroelectric switching, , Berlin: Springer; Weis, R.S., Gaylord, T.K., Lithium niobate: summary of physical properties and crystal structure (1985) Appl Phys A, 37, pp. 191-203; Shur, V.Y., Domain engineering in lithium niobate and lithium tantalate: Domain wall motion (2006) Ferroelectrics, 340, pp. 3-16; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications (2000) Ferroelectrics, 236, pp. 129-144; Bednyakov, P.S., Sluka, T., Tagantsev, A.K., Damjanovic, D., Setter, N., Formation of charged ferroelectric domain walls with controlled periodicity (2015) Sci Rep, 5, p. 15819; Eliseev, E.A., Morozovska, A.N., Svechnikov, G.S., Gopalan, V., Shur, V.Y., Static conductivity of charged domain wall in uniaxial ferroelectric-semiconductors (2011) Phys Rev B, 83, p. 235313; Schroder, M., Haussmann, A., Thiessen, A., Soergel, E., Woike, T., Eng, L.M., Conducting domain walls in lithium niobate single crystals (2012) Adv Funct Mater, 22, pp. 3936-3944; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Formation and evolution of charged domain walls in congruent lithium niobate (2000) Appl Phys Lett, 77, pp. 3636-3638; Wada, S., Domain wall engineering in lead-free piezoelectric materials (2009) Ferroelectrics, 389, pp. 3-9; Seidel, J., Martin, L.W., He, Q., Zhan, Q., Chu, Y.-H., Rother, A., Hawkridge, M.E., Ramesh, R., Conduction at domain walls in oxide multiferroics (2009) Nat Mater, 8, pp. 229-234; Neradovskiy, M.M., Shur, V.Y., Mingaliev, E.A., Zelenovskiy, P.S., Ushakova, E.S., Tronche, H., Baldi, P., De Micheli, M.P., Investigation of domain kinetics in congruent lithium niobate modified by proton exchange (2016) Ferroelectrics, 496, pp. 110-119; Shur, V.Y., Alikin, D.O., Ievlev, A.V., Dolbilov, M.A., Sarmanova, M.F., Gavrilov, N.V., Formation of nanodomain structures during polarization reversal in congruent lithium niobate implanted with Ar ions (2012) Trans Ultrason Ferroelectr Freq Control, 59, pp. 1934-1941; Pryakhina, V.I., Shur, V.Y., Alikin, D.O., Negashev, S.A., Polarization reversal in MgO:LiNbO3 single crystals modified by plasma-source ion irradiation (2012) Ferroelectrics, 439, pp. 20-32; Pryakhina, V.I., Alikin, D.O., Palitsin, I.S., Negashev, S.A., Shur, V.Y., Charged domain walls in lithium niobate with modified bulk conductivity (2015) Ferroelectrics, 476, pp. 109-116; Pryakhina, V.I., Alikin, D.O., Negashev, S.A., Shur, V.Y., Domain kinetics in LiNbO3 and LiTaO3 with modified bulk conductivity (2016) Ferroelectrics, 496, pp. 79-84; Shur, V.Y., Korovina, N.V., Gruverman, A.L., Time dependence and distribution of the internal field in lead germanate (1985) Sov Phys Tech Phys, 30, pp. 1204-1205 |