Electric field distribution during polarization reversal in lithium niobate with inhomogeneous bulk conductivity / Pryakhina V.I., Alikin D.O., Negashev S.A., Shur V.Y. // Ferroelectrics. - 2017. - V. 508, l. 1. - P. 26-30.

ISSN:
00150193
Type:
Article
Abstract:
We propose a method for direct observation of the spatial distribution of electric field in the bulk of lithium niobate (LN) single crystals. The experimental configuration allows revealing simultaneously domain kinetics due to polarization reversal. The complex analysis of the evolution of spatial field distribution and the stages of domain kinetics during polarization reversal in LN crystals with inhomogeneous modification of the bulk conductivity enables revealing the 3D growth of the charged domain walls. It opens new opportunities for creation of the charged domain walls in the single crystals of LN family. © 2017 Taylor & Francis Group, LLC.
Author keywords:
domain kinetics; domain structure; inhomogeneous conductivity; ion irradiation; Lithium niobate
Index keywords:
Crystals; Electric fields; Growth kinetics; Ion bombardment; Kinetics; Lithium; Niobium compounds; Polarization; Single crystals; Bulk conductivities; Distribution of electric fields; Domain kinetics;
DOI:
10.1080/00150193.2017.1286221
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017665045&doi=10.1080%2f00150193.2017.1286221&partnerID=40&md5=2e06e0fca0a10b21b71d43ff6bfe3810
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017665045&doi=10.1080%2f00150193.2017.1286221&partnerID=40&md5=2e06e0fca0a10b21b71d43ff6bfe3810
Affiliations School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federation
Author Keywords domain kinetics; domain structure; inhomogeneous conductivity; ion irradiation; Lithium niobate
References Shur, V.Y., Nano- and micro-domain engineering in normal and relaxor ferroelectrics (2008) Handbook of advanced dielectric, piezoelectric and ferroelectric materials. Synthesis, properties and applications, pp. 622-669. , Ye Z.-G., (ed), Cambridge: Woodhead Publishing; Volk, T., Wöhlecke, M., (2008) Lithium niobate: defects, photorefraction and ferroelectric switching, , Berlin: Springer; Weis, R.S., Gaylord, T.K., Lithium niobate: summary of physical properties and crystal structure (1985) Appl Phys A, 37, pp. 191-203; Shur, V.Y., Domain engineering in lithium niobate and lithium tantalate: Domain wall motion (2006) Ferroelectrics, 340, pp. 3-16; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications (2000) Ferroelectrics, 236, pp. 129-144; Bednyakov, P.S., Sluka, T., Tagantsev, A.K., Damjanovic, D., Setter, N., Formation of charged ferroelectric domain walls with controlled periodicity (2015) Sci Rep, 5, p. 15819; Eliseev, E.A., Morozovska, A.N., Svechnikov, G.S., Gopalan, V., Shur, V.Y., Static conductivity of charged domain wall in uniaxial ferroelectric-semiconductors (2011) Phys Rev B, 83, p. 235313; Schroder, M., Haussmann, A., Thiessen, A., Soergel, E., Woike, T., Eng, L.M., Conducting domain walls in lithium niobate single crystals (2012) Adv Funct Mater, 22, pp. 3936-3944; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Formation and evolution of charged domain walls in congruent lithium niobate (2000) Appl Phys Lett, 77, pp. 3636-3638; Wada, S., Domain wall engineering in lead-free piezoelectric materials (2009) Ferroelectrics, 389, pp. 3-9; Seidel, J., Martin, L.W., He, Q., Zhan, Q., Chu, Y.-H., Rother, A., Hawkridge, M.E., Ramesh, R., Conduction at domain walls in oxide multiferroics (2009) Nat Mater, 8, pp. 229-234; Neradovskiy, M.M., Shur, V.Y., Mingaliev, E.A., Zelenovskiy, P.S., Ushakova, E.S., Tronche, H., Baldi, P., De Micheli, M.P., Investigation of domain kinetics in congruent lithium niobate modified by proton exchange (2016) Ferroelectrics, 496, pp. 110-119; Shur, V.Y., Alikin, D.O., Ievlev, A.V., Dolbilov, M.A., Sarmanova, M.F., Gavrilov, N.V., Formation of nanodomain structures during polarization reversal in congruent lithium niobate implanted with Ar ions (2012) Trans Ultrason Ferroelectr Freq Control, 59, pp. 1934-1941; Pryakhina, V.I., Shur, V.Y., Alikin, D.O., Negashev, S.A., Polarization reversal in MgO:LiNbO3 single crystals modified by plasma-source ion irradiation (2012) Ferroelectrics, 439, pp. 20-32; Pryakhina, V.I., Alikin, D.O., Palitsin, I.S., Negashev, S.A., Shur, V.Y., Charged domain walls in lithium niobate with modified bulk conductivity (2015) Ferroelectrics, 476, pp. 109-116; Pryakhina, V.I., Alikin, D.O., Negashev, S.A., Shur, V.Y., Domain kinetics in LiNbO3 and LiTaO3 with modified bulk conductivity (2016) Ferroelectrics, 496, pp. 79-84; Shur, V.Y., Korovina, N.V., Gruverman, A.L., Time dependence and distribution of the internal field in lead germanate (1985) Sov Phys Tech Phys, 30, pp. 1204-1205
Correspondence Address Pryakhina, V.I.; School of Natural Sciences and Mathematics, Ural Federal UniversityRussian Federation; email: viktoria.pryahina@urfu.ru
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus