References |
Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Fejer, M.M., Byer, R.L., Recent achievements in domain engineering in lithium niobate and lithium tantalate (2001) Ferroelectrics, 257, pp. 191-202; Byer, R.L., (1997) Quasi-phasematched nonlinear interactions and devices: J Nonlinear Opt Phys Mater, 6, pp. 549-592; Myers, L.E., Eckardt, R.C., Fejer, M.M., Byer, R.L., Bosenberg, W.R., Pierce, J.W., Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3 (1995) J Opt Soc Am B, 12, pp. 2102-2116; Yamada, M., Saitoh, M., Ooki, H., Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals (1996) Appl Phys Lett, 69, p. 3659; Shur, V.Y., Zelenovskiy, P.S., Micro- and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy (2014) J Appl Phys, 116, p. 066802; Shur, V.Y., Akhmatkhanov, A.R., Baturin, I.S., Micro- and nano-domain engineering in lithium niobate (2015) Appl Phys Rev, 2, p. 40604; Shur, V.Y., Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3 (2006) J Mater Sci, 41, pp. 199-210; Kang, J.U., Ding, Y.J., Burns, W.K., Melinger, J.S., Backward second-harmonic generation in periodically poled bulk LiNbO3 (1997) Opt Lett, 22, pp. 862-864; Stivala, S., Busacca, A.C., Curcio, L., Oliveri, R.L., Riva-Sanseverino, S., Continuous-wave backward frequency doubling in periodically poled lithium niobate (2010) Appl Phys Lett, 96, p. 111110; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications (2000) Ferroelectrics, 236, pp. 129-144; Shur, V.Y., Domain nanotechnology in lithium Niobate and lithium tantalate crystals (2010) Ferroelectrics, 399, pp. 97-106; Suzuki, T., Suhara, T., Fabrication of ∼1 µm period poled structures in MgO:LiNbO3 by bipolar pulse application (2013) Jpn J Appl Phys, 52 (10R), p. 100204; Ito, H., Takyu, C., Inaba, H., Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes (1991) Electron Lett, 27, p. 1221; Nutt, A.C.G., Gopalan, V., Gupta, M.C., Domain inversion in LiNbO3 using direct electron-beam writing (1992) Appl Phys Lett, 60, p. 2828; Restoin, C., Darraud-Taupiac, C., Decossas, J.L., Vareille, J.C., Hauden, J., Martinez, A., Ferroelectric domain inversion by electron beam on LiNbO3 and Ti:LiNbO3 (2000) J Appl Phys, 88, p. 6665; He, J., Tang, S.H., Qin, Y.Q., Dong, P., Zhang, H.Z., Kang, C.H., Sun, W.X., Shen, Z.X., Two-dimensional structures of ferroelectric domain inversion in LiNbO3 by direct electron beam lithography (2003) J Appl Phys, 93, p. 9943; Kokhanchik, L.S., Borodin, M.V., Shandarov, S.M., Burimov, N.I., Shcherbina, V.V., Volk, T.R., Periodic domain structures formed under electron-beam irradiation in LiNbO3 plates and Ti:LiNbO3 planar waveguides of the Y cut (2010) Phys Solid State, 52, pp. 1722-1730; Kokhanchik, L.S., Volk, T.R., Domain inversion in LiNbO3 and Zn-doped LiNbO3 crystals by the electron-beam irradiation of the nonpolar Y-surface (2013) Appl Phys B, 110, pp. 367-373; Mateos, L., Bausá, L.E., Ramírez, M.O., Two dimensional ferroelectric domain patterns in Yb3+ optically active LiNbO3 fabricated by direct electron beam writing (2013) Appl Phys Lett, 102, p. 42910; Mateos, L., Bausá, L.E., Ramírez, M.O., Micro-spectroscopic characterization of ferroelectric domain structures in Yb3+:LiNbO3 prepared by electron beam writing (2014) Opt Mater Express, 4, p. 1077; Shur, V.Y., Chezganov, D.S., Smirnov, M.M., Alikin, D.O., Neradovskiy, M.M., Kuznetsov, D.K., Domain switching by electron beam irradiation of Z+-polar surface in Mg-doped lithium niobate (2014) Appl Phys Lett, 105, p. 52908; Volk, T.R., Kokhanchik, L.S., Gainutdinov, R.V., Bodnarchuk, Y.V., Shandarov, S.M., Borodin, M.V., Lavrov, S.D., Chen, F., Microdomain patterns recorded by an electron beam in He-implanted optical waveguides on X-cut LiNbO3 crystals (2015) J Light Technol, 33, pp. 4761-4766; Glickman, Y., Winebrand, E., Arie, A., Rosenman, G., Electron-beam-induced domain poling in LiNbO3 for two-dimensional nonlinear frequency conversion (2006) Appl Phys Lett, 88, p. 11103; Li, X., Terabe, K., Hatano, H., Kitamura, K., Domain patterning in LiNbO3 and LiTaO3 by focused electron beam (2006) J Cryst Growth, 292, pp. 324-327; Chezganov, D.S., Smirnov, M.M., Kuznetsov, D.K., Shur, V.Y., Electron beam domain patterning of MgO-doped lithium niobate crystals covered by resist layer (2015) Ferroelectrics, 476, pp. 117-126; Shur, V.Y., Chezganov, D.S., Akhmatkhanov, A.R., Kuznetsov, D.K., Domain patterning by electron beam of MgO doped lithium niobate covered by resist (2015) Appl Phys Lett, 106, p. 232902; Chezganov, D.S., Vlasov, E.O., Neradovskiy, M.M., Gimadeeva, L.V., Neradovskaya, E.A., Chuvakova, M.A., Tronche, H., Shur, V.Y., Periodic domain patterning by electron beam of proton exchanged waveguides in lithium niobate (2016) Appl Phys Lett, 108, p. 192903; Madou, M.J., (2012) Fundamentals of microfabrication and nanotechnology, , Boca Raton: CRC Press; Sze, S.M., (2002) Semiconductor devices, physics and technology, , New York: Wiley; Li, X., Terabe, K., Hatano, H., Zeng, H., Kitamura, K., Domain patterning thin crystalline ferroelectric film with focused ion beam for nonlinear photonic integrated circuits (2006) J Appl Phys, 100, p. 106103; Li, X., Terabe, K., Hatano, H., Kitamura, K., Nano-domain engineering in LiNbO3 by focused ion beam (2005) Jpn J Appl Phys, 44, pp. L1550-L1552; Li, X., Watanabe, A., Hatano, H., Terabe, K., Kitamura, K., Patterning sub-micrometer domain in MgO:LiNbO3 ridge waveguides by focused ion beam for QPM nonlinear optical devices (2007) In: Conference Lasers Electro-Optics (CLEO), pp. 6-7; Chezganov, D.S., Shur, V.Y., Vlasov, E.O., Gimadeeva, L.V., Alikin, D.O., Akhmatkhanov, A.R., Chuvakova, M.A., Mikhailovskii, V.Y., Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals (2017) Appl Phys Lett, 110. , in press; Chezganov, D.S., Kuznetsov, D.K., Shur, V.Y., Simulation of spatial distribution of electric field after electron beam irradiation of MgO-doped LiNbO3 covered by resist layer (2016) Ferroelectrics, 496, pp. 70-78; Shur, V.Y., Lobov, A.I., Shur, A.G., Kurimura, S., Nomura, Y., Terabe, K., Liu, X.Y., Kitamura, K., Rearrangement of ferroelectric domain structure induced by chemical etching (2005) Appl Phys Lett, 87, p. 22905; Gruverman, A., Kalinin, S.V., Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics (2006) J Mater Sci, 41, pp. 107-116; Nikolaeva, E.V., Shur, V.Y., Dolbilov, M.A., Shishkin, E.I., Kuznetsov, D.K., Sarmanova, M.F., Plaksin, O.A., Gavrilov, N.V., Formation of nanoscale domain structures and abnormal switching kinetics in lithium niobate with surface layer modified by implantation of copper ions (2008) Ferroelectrics, 374, pp. 73-77; Shur, V.Y., Ievlev, A.V., Nikolaeva, E.V., Shishkin, E.I., Neradovskiy, M.M., Influence of adsorbed surface layer on domain growth in the field produced by conductive tip of scanning probe microscope in lithium niobate (2011) J Appl Phys, 110, p. 52017; Shur, V.Y., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals (2011) J Appl Phys, 110, p. 52013; Zelenovskiy, P.S., Fontana, M.D., Shur, V.Y., Bourson, P., Kuznetsov, D.K., Raman visualization of micro- and nanoscale domain structures in lithium niobate (2010) Appl Phys A, 99, pp. 741-744; Shur, V.Y., Correlated nucleation and self-organized kinetics of ferroelectric domains (2005) Nucleation Theory Appl., pp. 178-214. , schmelzer J.W.P., (ed), Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; Shur, V.Y., Lobov, A.I., Shur, A.G., Rumyantsev, E.L., Gallo, K., Shape evolution of isolated micro-domains in lithium niobate (2007) Ferroelectrics, 360, pp. 111-119; Shur, V.Y., Akhmatkhanov, A.R., Chezganov, D.S., Lobov, A.I., Baturin, I.S., Smirnov, M.M., Shape of isolated domains in lithium tantalate single crystals at elevated temperatures (2013) Appl Phys Lett, 103, p. 242903; Shishkin, E.I., Nikolaeva, E.V., Shur, V.Y., Sarmanova, M.F., Dolbilov, M.A., Nebogatikov, M.S., Alikin, D.O., Gavrilov, N.V., Abnormal domain evolution in lithium niobate with surface layer modified by Cu ion implantation (2010) Ferroelectrics, 399, pp. 49-57; Rossnagel, S.M., Westwood, W.D., Cuomo, J.J., (1990) Handbook of plasma processing technology: Fundamentals, etching, deposition, and surface interactions, , Park Ridge: Noyes Publications; Townsend, P.D., Chandler, P.J., Zhang, L., (1994) Optical effects of ion implantation, , Cambridge: Cambridge University Press; Chen, F., Photonic guiding structures in lithium niobate crystals produced by energetic ion beams (2009) J Appl Phys, 106, p. 81101; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Formation and evolution of charged domain walls in congruent lithium niobate (2000) Appl Phys Lett, 77, pp. 3636-3638; Chezganov, D.S., Shur, V.Y., Baturin, I.S., Akhmatkhanov, A.R., Polarization reversal in crystals of congruent lithium tantalate at elevated temperatures (2012) Ferroelectrics, 439, pp. 40-46 |