Growth of isolated domains induced by focused ion beam irradiation in congruent lithium niobate / Chezganov D.S., Vlasov E.O., Gimadeeva L.V., Alikin D.O., Chuvakova M.A., Vaskina E.M., Shur V.Y. // Ferroelectrics. - 2017. - V. 508, l. 1. - P. 16-25.

ISSN:
00150193
Type:
Article
Abstract:
Formation of isolated domains induced by i-beam irradiation in single crystals of congruent lithium niobate with polar surface covered by uniform resist layer was studied. The change of domain shape with dose increase was attributed to gradual penetration of charge through the resist layer caused by i-beam milling. The appearance of the dendrite structures was attributed to formation of the surface dielectric gap due to out-diffusion of oxygen to electrode. We applied the obtained knowledge for creation of the 1-µm-period 2D square arrays of isolated domains with minimal radius about 300 nm and the 1-µm-period 1D pattern of stripe domains. © 2017 Taylor & Francis Group, LLC.
Author keywords:
domain engineering; focused ion beam patterning; Lithium niobate
Index keywords:
Focused ion beams; Ion bombardment; Irradiation; Lithium; Niobium compounds; Single crystals; Congruent lithium niobate; Dendrite structures; Domain engineering; Lithium niobate; Out diffusion; Polar
DOI:
10.1080/00150193.2017.1286214
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017639230&doi=10.1080%2f00150193.2017.1286214&partnerID=40&md5=cace6d669c2a9b597ebce2371a2ee5da
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017639230&doi=10.1080%2f00150193.2017.1286214&partnerID=40&md5=cace6d669c2a9b597ebce2371a2ee5da
Affiliations School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federation; Labfer Ltd., Ekaterinburg, Russian Federation
Author Keywords domain engineering; focused ion beam patterning; Lithium niobate
References Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Fejer, M.M., Byer, R.L., Recent achievements in domain engineering in lithium niobate and lithium tantalate (2001) Ferroelectrics, 257, pp. 191-202; Byer, R.L., (1997) Quasi-phasematched nonlinear interactions and devices: J Nonlinear Opt Phys Mater, 6, pp. 549-592; Myers, L.E., Eckardt, R.C., Fejer, M.M., Byer, R.L., Bosenberg, W.R., Pierce, J.W., Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3 (1995) J Opt Soc Am B, 12, pp. 2102-2116; Yamada, M., Saitoh, M., Ooki, H., Electric-field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals (1996) Appl Phys Lett, 69, p. 3659; Shur, V.Y., Zelenovskiy, P.S., Micro- and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy (2014) J Appl Phys, 116, p. 066802; Shur, V.Y., Akhmatkhanov, A.R., Baturin, I.S., Micro- and nano-domain engineering in lithium niobate (2015) Appl Phys Rev, 2, p. 40604; Shur, V.Y., Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3 (2006) J Mater Sci, 41, pp. 199-210; Kang, J.U., Ding, Y.J., Burns, W.K., Melinger, J.S., Backward second-harmonic generation in periodically poled bulk LiNbO3 (1997) Opt Lett, 22, pp. 862-864; Stivala, S., Busacca, A.C., Curcio, L., Oliveri, R.L., Riva-Sanseverino, S., Continuous-wave backward frequency doubling in periodically poled lithium niobate (2010) Appl Phys Lett, 96, p. 111110; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications (2000) Ferroelectrics, 236, pp. 129-144; Shur, V.Y., Domain nanotechnology in lithium Niobate and lithium tantalate crystals (2010) Ferroelectrics, 399, pp. 97-106; Suzuki, T., Suhara, T., Fabrication of ∼1 µm period poled structures in MgO:LiNbO3 by bipolar pulse application (2013) Jpn J Appl Phys, 52 (10R), p. 100204; Ito, H., Takyu, C., Inaba, H., Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes (1991) Electron Lett, 27, p. 1221; Nutt, A.C.G., Gopalan, V., Gupta, M.C., Domain inversion in LiNbO3 using direct electron-beam writing (1992) Appl Phys Lett, 60, p. 2828; Restoin, C., Darraud-Taupiac, C., Decossas, J.L., Vareille, J.C., Hauden, J., Martinez, A., Ferroelectric domain inversion by electron beam on LiNbO3 and Ti:LiNbO3 (2000) J Appl Phys, 88, p. 6665; He, J., Tang, S.H., Qin, Y.Q., Dong, P., Zhang, H.Z., Kang, C.H., Sun, W.X., Shen, Z.X., Two-dimensional structures of ferroelectric domain inversion in LiNbO3 by direct electron beam lithography (2003) J Appl Phys, 93, p. 9943; Kokhanchik, L.S., Borodin, M.V., Shandarov, S.M., Burimov, N.I., Shcherbina, V.V., Volk, T.R., Periodic domain structures formed under electron-beam irradiation in LiNbO3 plates and Ti:LiNbO3 planar waveguides of the Y cut (2010) Phys Solid State, 52, pp. 1722-1730; Kokhanchik, L.S., Volk, T.R., Domain inversion in LiNbO3 and Zn-doped LiNbO3 crystals by the electron-beam irradiation of the nonpolar Y-surface (2013) Appl Phys B, 110, pp. 367-373; Mateos, L., Bausá, L.E., Ramírez, M.O., Two dimensional ferroelectric domain patterns in Yb3+ optically active LiNbO3 fabricated by direct electron beam writing (2013) Appl Phys Lett, 102, p. 42910; Mateos, L., Bausá, L.E., Ramírez, M.O., Micro-spectroscopic characterization of ferroelectric domain structures in Yb3+:LiNbO3 prepared by electron beam writing (2014) Opt Mater Express, 4, p. 1077; Shur, V.Y., Chezganov, D.S., Smirnov, M.M., Alikin, D.O., Neradovskiy, M.M., Kuznetsov, D.K., Domain switching by electron beam irradiation of Z+-polar surface in Mg-doped lithium niobate (2014) Appl Phys Lett, 105, p. 52908; Volk, T.R., Kokhanchik, L.S., Gainutdinov, R.V., Bodnarchuk, Y.V., Shandarov, S.M., Borodin, M.V., Lavrov, S.D., Chen, F., Microdomain patterns recorded by an electron beam in He-implanted optical waveguides on X-cut LiNbO3 crystals (2015) J Light Technol, 33, pp. 4761-4766; Glickman, Y., Winebrand, E., Arie, A., Rosenman, G., Electron-beam-induced domain poling in LiNbO3 for two-dimensional nonlinear frequency conversion (2006) Appl Phys Lett, 88, p. 11103; Li, X., Terabe, K., Hatano, H., Kitamura, K., Domain patterning in LiNbO3 and LiTaO3 by focused electron beam (2006) J Cryst Growth, 292, pp. 324-327; Chezganov, D.S., Smirnov, M.M., Kuznetsov, D.K., Shur, V.Y., Electron beam domain patterning of MgO-doped lithium niobate crystals covered by resist layer (2015) Ferroelectrics, 476, pp. 117-126; Shur, V.Y., Chezganov, D.S., Akhmatkhanov, A.R., Kuznetsov, D.K., Domain patterning by electron beam of MgO doped lithium niobate covered by resist (2015) Appl Phys Lett, 106, p. 232902; Chezganov, D.S., Vlasov, E.O., Neradovskiy, M.M., Gimadeeva, L.V., Neradovskaya, E.A., Chuvakova, M.A., Tronche, H., Shur, V.Y., Periodic domain patterning by electron beam of proton exchanged waveguides in lithium niobate (2016) Appl Phys Lett, 108, p. 192903; Madou, M.J., (2012) Fundamentals of microfabrication and nanotechnology, , Boca Raton: CRC Press; Sze, S.M., (2002) Semiconductor devices, physics and technology, , New York: Wiley; Li, X., Terabe, K., Hatano, H., Zeng, H., Kitamura, K., Domain patterning thin crystalline ferroelectric film with focused ion beam for nonlinear photonic integrated circuits (2006) J Appl Phys, 100, p. 106103; Li, X., Terabe, K., Hatano, H., Kitamura, K., Nano-domain engineering in LiNbO3 by focused ion beam (2005) Jpn J Appl Phys, 44, pp. L1550-L1552; Li, X., Watanabe, A., Hatano, H., Terabe, K., Kitamura, K., Patterning sub-micrometer domain in MgO:LiNbO3 ridge waveguides by focused ion beam for QPM nonlinear optical devices (2007) In: Conference Lasers Electro-Optics (CLEO), pp. 6-7; Chezganov, D.S., Shur, V.Y., Vlasov, E.O., Gimadeeva, L.V., Alikin, D.O., Akhmatkhanov, A.R., Chuvakova, M.A., Mikhailovskii, V.Y., Influence of the artificial surface dielectric layer on domain patterning by ion beam in MgO-doped lithium niobate single crystals (2017) Appl Phys Lett, 110. , in press; Chezganov, D.S., Kuznetsov, D.K., Shur, V.Y., Simulation of spatial distribution of electric field after electron beam irradiation of MgO-doped LiNbO3 covered by resist layer (2016) Ferroelectrics, 496, pp. 70-78; Shur, V.Y., Lobov, A.I., Shur, A.G., Kurimura, S., Nomura, Y., Terabe, K., Liu, X.Y., Kitamura, K., Rearrangement of ferroelectric domain structure induced by chemical etching (2005) Appl Phys Lett, 87, p. 22905; Gruverman, A., Kalinin, S.V., Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics (2006) J Mater Sci, 41, pp. 107-116; Nikolaeva, E.V., Shur, V.Y., Dolbilov, M.A., Shishkin, E.I., Kuznetsov, D.K., Sarmanova, M.F., Plaksin, O.A., Gavrilov, N.V., Formation of nanoscale domain structures and abnormal switching kinetics in lithium niobate with surface layer modified by implantation of copper ions (2008) Ferroelectrics, 374, pp. 73-77; Shur, V.Y., Ievlev, A.V., Nikolaeva, E.V., Shishkin, E.I., Neradovskiy, M.M., Influence of adsorbed surface layer on domain growth in the field produced by conductive tip of scanning probe microscope in lithium niobate (2011) J Appl Phys, 110, p. 52017; Shur, V.Y., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals (2011) J Appl Phys, 110, p. 52013; Zelenovskiy, P.S., Fontana, M.D., Shur, V.Y., Bourson, P., Kuznetsov, D.K., Raman visualization of micro- and nanoscale domain structures in lithium niobate (2010) Appl Phys A, 99, pp. 741-744; Shur, V.Y., Correlated nucleation and self-organized kinetics of ferroelectric domains (2005) Nucleation Theory Appl., pp. 178-214. , schmelzer J.W.P., (ed), Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; Shur, V.Y., Lobov, A.I., Shur, A.G., Rumyantsev, E.L., Gallo, K., Shape evolution of isolated micro-domains in lithium niobate (2007) Ferroelectrics, 360, pp. 111-119; Shur, V.Y., Akhmatkhanov, A.R., Chezganov, D.S., Lobov, A.I., Baturin, I.S., Smirnov, M.M., Shape of isolated domains in lithium tantalate single crystals at elevated temperatures (2013) Appl Phys Lett, 103, p. 242903; Shishkin, E.I., Nikolaeva, E.V., Shur, V.Y., Sarmanova, M.F., Dolbilov, M.A., Nebogatikov, M.S., Alikin, D.O., Gavrilov, N.V., Abnormal domain evolution in lithium niobate with surface layer modified by Cu ion implantation (2010) Ferroelectrics, 399, pp. 49-57; Rossnagel, S.M., Westwood, W.D., Cuomo, J.J., (1990) Handbook of plasma processing technology: Fundamentals, etching, deposition, and surface interactions, , Park Ridge: Noyes Publications; Townsend, P.D., Chandler, P.J., Zhang, L., (1994) Optical effects of ion implantation, , Cambridge: Cambridge University Press; Chen, F., Photonic guiding structures in lithium niobate crystals produced by energetic ion beams (2009) J Appl Phys, 106, p. 81101; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Formation and evolution of charged domain walls in congruent lithium niobate (2000) Appl Phys Lett, 77, pp. 3636-3638; Chezganov, D.S., Shur, V.Y., Baturin, I.S., Akhmatkhanov, A.R., Polarization reversal in crystals of congruent lithium tantalate at elevated temperatures (2012) Ferroelectrics, 439, pp. 40-46
Correspondence Address Chezganov, D.S.; School of Natural Sciences and Mathematics, Ural Federal UniversityRussian Federation; email: chezganov.dmitry@urfu.ru
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus