References |
Aksel, E., Jones, J.L., Advances in lead-free piezoelectric materials for sensors and actuators (2010) Sensors, 10, pp. 1935-1954; Irschik, H., Krommer, M., Vetyukov, Y., On the use of piezoelectric sensors in structural mechanics: some novel strategies (2010) Sensors, 10, pp. 5626-5641; Spanner, K., Koc, B., Piezoelectric motors, an overview (2016) Actuators, 5, p. 6; Hong, C.-H., Kim, H.-P., Choi, B.-Y., Han, H.-S., Son, J.S., Ahn, C.W., Jo, W., Lead-free piezoceramics–where to move on? (2016) J Mater., 2, pp. 1-24; Saito, Y., Takao, H., High performance lead-free piezoelectric ceramics in the (K,Na)NbO3-LiTaO3 solid solution system (2006) Ferroelectrics, 338, pp. 17-32; Kosec, M., Malič, B., Benčan, A., Rojac, T., KNN-based piezoelectric ceramics (2008) Piezoelectric Acoust Mater Transducer Appl, pp. 81-102; Arlt, G., Sasko, P., Domain configuration and equilibrium size of domains in BaTiO3 ceramics (1980) J Appl Phys, 51, pp. 4956-4960; Wada, S., Kakemoto, H., Tsurumi, T., Enhanced piezoelectric properties of piezoelectric single crystals by domain engineering (2004) Mater Trans, 45, pp. 178-187; Wada, S., Domain wall engineering in lead-free piezoelectric materials (2009) Ferroelectrics, 389, pp. 3-9; Lin, D., Zhang, S., Cai, C., Liu, W., (2015) Domain size engineering in 0.5%MnO2-(K0.5Na0.5)NbO3 lead free piezoelectric crystals, 117, p. 074103; Shur, V.Y., Akhmatkhanov, A.R., Baturin, I.S., Micro- and nano-domain engineering in lithium niobate (2015) Appl Phys Rev, 2, p. 040604; Inoue, R., Ishikawa, S., Imura, R., Kitanaka, Y., Oguchi, T., Noguchi, Y., Miyayama, M., Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals (2015) Sci Rep, 5, p. 14741; Sluka, T., Tagantsev, A.K., Damjanovic, D., Gureev, M., Setter, N., Enhanced electromechanical response of ferroelectrics due to charged domain walls (2012) Nat Commun, 3, p. 748; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Fejer, M.M., Byer, R.L., Recent achievements in domain engineering in lithium niobate and lithium tantalate (2001) Ferroelectrics, 257, pp. 191-202; Shur, V.Y., Domain nanotechnology in lithium niobate and lithium tantalate crystals (2010) Ferroelectrics, 399, pp. 97-106; Soergel, E., Piezoresponse force microscopy (PFM) (2011) J Phys D Appl Phys, 44, p. 464003; Balke, N., Bdikin, I., Kalinin, S.V., Kholkin, A.L., Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future (2009) J Am Ceram Soc, 92, pp. 1629-1647; Denning, D., Guyonnet, J., Rodriguez, B.J., Applications of piezoresponse force microscopy in materials research: from inorganic ferroelectrics to biopiezoelectrics and beyond (2016) Int Mater Rev, 61, pp. 46-70; Kalinin, S.V., Rodriguez, B.J., Kim, S.H., Hong, S.K., Gruverman, A., Eliseev, E.A., Imaging mechanism of piezoresponse force microscopy in capacitor structures (2008) Appl Phys Lett, 92, p. 152906; Eng, L.M., Guntherodt, H.J., Schneider, G.A., Kopke, U., Saldana, J.M., Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium-titanate ceramics (1999) Appl Phys Lett, 74, pp. 233-235; Kalinin, S.V., Rodriguez, B.J., Jesse, S., Shin, J., Baddorf, A.P., Gupta, P., Jain, H., Gruverman, A., Vector piezoresponse force microscopy (2006) Microsc Microanal, 12, pp. 206-220; Park, M., Hong, S., Klug, J.A., Bedzyk, M.J., Auciello, O., No, K., A. Petford-Long, Three-dimensional ferroelectric domain imaging of epitaxial BiFeO3 thin films using angle-resolved piezoresponse force microscopy (2010) Appl Phys Lett, 97, p. 112907; Jesse, S., Baddorf, A.P., Kalinin, S.V., Switching spectroscopy piezoresponse force microscopy of ferroelectric materials (2006) Appl Phys Lett, 88, pp. 21-24; Morozovska, A.N., Kalinin, S.V., Eliseev, E.A., Svechnikov, S.V., Local polarization switching in piezoresponse force microscopy (2007) Ferroelectrics, 354, pp. 198-207; Turygin, A.P., Neradovskiy, M.M., Naumova, N.A., Zayats, D.V., Coondoo, I., Kholkin, A.L., Shur, V.Y., Domain structures and local switching in lead-free piezoceramics Ba0.85Ca0.15Ti0.90Zr0.10O3 (2015) J Appl Phys, 118, p. 072002; Hong, S., Nakhmanson, S.M., Fong, D.D., Screening mechanisms at polar oxide heterointerfaces (2016) Reports Prog Phys, 79, p. 076501; Shvartsman, V.V., Kleemann, W., Haumont, R., Kreisel, J., Large bulk polarization and regular domain structure in ceramic BiFeO3 (2007) Appl Phys Lett, 90, pp. 9-12; Hreščak, J., Bencan, A., Rojac, T., Malič, B., The influence of different niobium pentoxide precursors on the solid-state synthesis of potassium sodium niobate (2013) J Eur Ceram Soc, 33, pp. 3065-3075; Doi, T., Uhlmann, E., Marinescu, I., (2015) Handbook of Ceramics Grinding and Polishing, , Amsterdam: Elsevier; Shur, V.Y., Ievlev, A.V., Nikolaeva, E.V., Shishkin, E.I., Neradovskiy, M.M., Influence of adsorbed surface layer on domain growth in the field produced by conductive tip of scanning probe microscope in lithium niobate (2011) J Appl Phys, 110, p. 052017; Esin, A.A., Alikin, D.O., Turygin, A.P., Abramov, A.S., Hreščak, J., Rojac, T., Bencan, A., Shur, V.Y., Dielectric relaxation and charged domain walls relation in (K,Na)NbO3-based ferroelectric ceramics (2017) J Appl Phys, , 121, 074101; Hreščak, J., (2016) Synthesis and characterization of undoped and strontium doped potassium sodium niobate ceramics, , PhD thesis, Ljubljana, Slovenia:; Zhang, J., Tian, X., Gao, Y., Yao, W., Qin, Y., Su, W., Domain structure of poled (K0.50Na0.50)1− xLixNbO3 ceramics with different stabilities (2015) J Am Ceram Soc., 98, pp. 990-995; Qin, Y., Zhang, J., Tan, Y., Yao, W., Wang, C., Zhang, S., Domain configuration and piezoelectric properties of (K0.50Na0.50)1−xLix(Nb0.80Ta0.20)O3 ceramics (2014) J Eur Ceram Soc, 34, pp. 4177-4184; Pertsev, N.A., Arlt, G., Theory of the banded domain structure in coarse-grained ferroelectric ceramics (1992) Ferroelectrics, 132, pp. 27-40; Arlt, G., Dederichs, H., Herbiet, R., 90-domain wall relaxation in tetragonally distorted ferroelectric ceramics (1987) Ferroelectrics, 74, pp. 37-53; Shvartsman, V.V., Kholkin, A.L., Orlova, A., Kiselev, D., Bogomolov, A.A., Sternberg, A., Polar nanodomains and local ferroelectric phenomena in relaxor lead lanthanum zirconate titanate ceramics (2005) Appl Phys Lett, 86, p. 202907; Alkoy, E.M., Berksoy-Yavuz, A., Electrical properties and impedance spectroscopy of pure and copper-oxide-added potassium sodium niobate ceramics (2012) IEEE Trans Ultrason Ferroelectr Freq Control, 59, pp. 2121-2128; Cho, J.H., Lee, Y.H., Han, K.S., Chun, M.P., Nam, J.H., Kim, B.I., Effect of domain size on the coercive field of orthorhombic (Li,K,Na)NbO3 ceramics (2010) J Kor Phys Soc, 57, pp. 971-974; Balke, N., Maksymovych, P., Jesse, S., Herklotz, A., Tselev, A., Eom, C., Kravchenko, I.I., Kalinin, S.V., Differentiating ferroelectric and effects with scanning probe microscopy (2015) ACS Nano, 9, pp. 6484-6492; Shur, V.Y., Kinetics of polarization reversal in normal and relaxor ferroelectrics: relaxation effects (1998) Phase Transitions, 65, pp. 49-72; Rodriguez, B.J., Nemanich, R.J., Kingon, A., Gruverman, A., Kalinin, S.V., Terabe, K., Liu, X.Y., Kitamura, K., Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy (2005) Appl Phys Lett, 86, p. 012906; Pertsev, N.A., Kiselev, D.A., Bdikin, I.K., Kosec, M., Kholkin, A.L., Quasi-one-dimensional domain walls in ferroelectric ceramics: Evidence from domain dynamics and wall roughness measurements (2011) J Appl Phys, 110, p. 052001; Rosenman, G., Urenski, P., Agronin, A., Rosenwaks, Y., Molotskii, M., Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy (2003) Appl Phys Lett, 82, pp. 103-105; Miller, R.C., Weireich, G., Mechanism for the sidewise motion of 180° domain walls in barium titanate (1960) Phys Rev, 117, pp. 1460-1466; Baturin, I.S., Akhmatkhanov, A.R., Shur, V.Y., Nebogatikov, M.S., Dolbilov, M.A., Rodina, E.A., Characterization of bulk screening in single crystals of lithium niobate and lithium tantalate family (2008) Ferroelectrics, 374, pp. 1-13 |