Characterization of domain structure and domain wall kinetics in lead-free Sr2+ doped K0.5Na0.5NbO3 piezoelectric ceramics by piezoresponse force microscopy / Turygin A.P., Alikin D.O., Abramov A.S., Hreščak J., Walker J., Bencan A., Rojac T., Malic B., Kholkin A.L., Shur V.Y. // Ferroelectrics. - 2017. - V. 508, l. 1. - P. 77-86.

ISSN:
00150193
Type:
Article
Abstract:
The domain structure and local polarization reversal were studied in lead-free ceramics (K0.5Na0.5)1-2xSrxNbO3 by various modes of scanning probe microscopy. It was shown that the increase in Sr concentration led to a decrease in both grain and domain sizes. The local polarization reversal study provided important information on the domain wall dynamics in this complicated system. The defect distribution in doped ceramics was proposed as a major factor limiting domain wall mobility and internal bias field decrease together with the increase of the activation field for domain wall motion. © 2017 Taylor & Francis Group, LLC.
Author keywords:
domain kinetics; Lead-free piezoelectric ceramics; local polarization reversal; piezoresponse force microscopy
Index keywords:
Ceramic materials; Niobium oxide; Piezoelectric ceramics; Piezoelectricity; Polarization; Scanning probe microscopy; Sodium; Complicated systems; Domain kinetics; Domain-wall dynamics; Domain-wall mob
DOI:
10.1080/00150193.2017.1288560
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017600270&doi=10.1080%2f00150193.2017.1288560&partnerID=40&md5=914448d30095b48426c3eb6e2f6e9ff1
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017600270&doi=10.1080%2f00150193.2017.1288560&partnerID=40&md5=914448d30095b48426c3eb6e2f6e9ff1
Affiliations School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federation; Electronic Ceramic Department, Jožef Stefan Institute, Ljubljana, Slovenia; Materials Research Institute, Pennsylvania State UniversityPA, United States; Physics Department & CICECO–Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
Author Keywords domain kinetics; Lead-free piezoelectric ceramics; local polarization reversal; piezoresponse force microscopy
References Aksel, E., Jones, J.L., Advances in lead-free piezoelectric materials for sensors and actuators (2010) Sensors, 10, pp. 1935-1954; Irschik, H., Krommer, M., Vetyukov, Y., On the use of piezoelectric sensors in structural mechanics: some novel strategies (2010) Sensors, 10, pp. 5626-5641; Spanner, K., Koc, B., Piezoelectric motors, an overview (2016) Actuators, 5, p. 6; Hong, C.-H., Kim, H.-P., Choi, B.-Y., Han, H.-S., Son, J.S., Ahn, C.W., Jo, W., Lead-free piezoceramics–where to move on? (2016) J Mater., 2, pp. 1-24; Saito, Y., Takao, H., High performance lead-free piezoelectric ceramics in the (K,Na)NbO3-LiTaO3 solid solution system (2006) Ferroelectrics, 338, pp. 17-32; Kosec, M., Malič, B., Benčan, A., Rojac, T., KNN-based piezoelectric ceramics (2008) Piezoelectric Acoust Mater Transducer Appl, pp. 81-102; Arlt, G., Sasko, P., Domain configuration and equilibrium size of domains in BaTiO3 ceramics (1980) J Appl Phys, 51, pp. 4956-4960; Wada, S., Kakemoto, H., Tsurumi, T., Enhanced piezoelectric properties of piezoelectric single crystals by domain engineering (2004) Mater Trans, 45, pp. 178-187; Wada, S., Domain wall engineering in lead-free piezoelectric materials (2009) Ferroelectrics, 389, pp. 3-9; Lin, D., Zhang, S., Cai, C., Liu, W., (2015) Domain size engineering in 0.5%MnO2-(K0.5Na0.5)NbO3 lead free piezoelectric crystals, 117, p. 074103; Shur, V.Y., Akhmatkhanov, A.R., Baturin, I.S., Micro- and nano-domain engineering in lithium niobate (2015) Appl Phys Rev, 2, p. 040604; Inoue, R., Ishikawa, S., Imura, R., Kitanaka, Y., Oguchi, T., Noguchi, Y., Miyayama, M., Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals (2015) Sci Rep, 5, p. 14741; Sluka, T., Tagantsev, A.K., Damjanovic, D., Gureev, M., Setter, N., Enhanced electromechanical response of ferroelectrics due to charged domain walls (2012) Nat Commun, 3, p. 748; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Fejer, M.M., Byer, R.L., Recent achievements in domain engineering in lithium niobate and lithium tantalate (2001) Ferroelectrics, 257, pp. 191-202; Shur, V.Y., Domain nanotechnology in lithium niobate and lithium tantalate crystals (2010) Ferroelectrics, 399, pp. 97-106; Soergel, E., Piezoresponse force microscopy (PFM) (2011) J Phys D Appl Phys, 44, p. 464003; Balke, N., Bdikin, I., Kalinin, S.V., Kholkin, A.L., Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future (2009) J Am Ceram Soc, 92, pp. 1629-1647; Denning, D., Guyonnet, J., Rodriguez, B.J., Applications of piezoresponse force microscopy in materials research: from inorganic ferroelectrics to biopiezoelectrics and beyond (2016) Int Mater Rev, 61, pp. 46-70; Kalinin, S.V., Rodriguez, B.J., Kim, S.H., Hong, S.K., Gruverman, A., Eliseev, E.A., Imaging mechanism of piezoresponse force microscopy in capacitor structures (2008) Appl Phys Lett, 92, p. 152906; Eng, L.M., Guntherodt, H.J., Schneider, G.A., Kopke, U., Saldana, J.M., Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium-titanate ceramics (1999) Appl Phys Lett, 74, pp. 233-235; Kalinin, S.V., Rodriguez, B.J., Jesse, S., Shin, J., Baddorf, A.P., Gupta, P., Jain, H., Gruverman, A., Vector piezoresponse force microscopy (2006) Microsc Microanal, 12, pp. 206-220; Park, M., Hong, S., Klug, J.A., Bedzyk, M.J., Auciello, O., No, K., A. Petford-Long, Three-dimensional ferroelectric domain imaging of epitaxial BiFeO3 thin films using angle-resolved piezoresponse force microscopy (2010) Appl Phys Lett, 97, p. 112907; Jesse, S., Baddorf, A.P., Kalinin, S.V., Switching spectroscopy piezoresponse force microscopy of ferroelectric materials (2006) Appl Phys Lett, 88, pp. 21-24; Morozovska, A.N., Kalinin, S.V., Eliseev, E.A., Svechnikov, S.V., Local polarization switching in piezoresponse force microscopy (2007) Ferroelectrics, 354, pp. 198-207; Turygin, A.P., Neradovskiy, M.M., Naumova, N.A., Zayats, D.V., Coondoo, I., Kholkin, A.L., Shur, V.Y., Domain structures and local switching in lead-free piezoceramics Ba0.85Ca0.15Ti0.90Zr0.10O3 (2015) J Appl Phys, 118, p. 072002; Hong, S., Nakhmanson, S.M., Fong, D.D., Screening mechanisms at polar oxide heterointerfaces (2016) Reports Prog Phys, 79, p. 076501; Shvartsman, V.V., Kleemann, W., Haumont, R., Kreisel, J., Large bulk polarization and regular domain structure in ceramic BiFeO3 (2007) Appl Phys Lett, 90, pp. 9-12; Hreščak, J., Bencan, A., Rojac, T., Malič, B., The influence of different niobium pentoxide precursors on the solid-state synthesis of potassium sodium niobate (2013) J Eur Ceram Soc, 33, pp. 3065-3075; Doi, T., Uhlmann, E., Marinescu, I., (2015) Handbook of Ceramics Grinding and Polishing, , Amsterdam: Elsevier; Shur, V.Y., Ievlev, A.V., Nikolaeva, E.V., Shishkin, E.I., Neradovskiy, M.M., Influence of adsorbed surface layer on domain growth in the field produced by conductive tip of scanning probe microscope in lithium niobate (2011) J Appl Phys, 110, p. 052017; Esin, A.A., Alikin, D.O., Turygin, A.P., Abramov, A.S., Hreščak, J., Rojac, T., Bencan, A., Shur, V.Y., Dielectric relaxation and charged domain walls relation in (K,Na)NbO3-based ferroelectric ceramics (2017) J Appl Phys, , 121, 074101; Hreščak, J., (2016) Synthesis and characterization of undoped and strontium doped potassium sodium niobate ceramics, , PhD thesis, Ljubljana, Slovenia:; Zhang, J., Tian, X., Gao, Y., Yao, W., Qin, Y., Su, W., Domain structure of poled (K0.50Na0.50)1− xLixNbO3 ceramics with different stabilities (2015) J Am Ceram Soc., 98, pp. 990-995; Qin, Y., Zhang, J., Tan, Y., Yao, W., Wang, C., Zhang, S., Domain configuration and piezoelectric properties of (K0.50Na0.50)1−xLix(Nb0.80Ta0.20)O3 ceramics (2014) J Eur Ceram Soc, 34, pp. 4177-4184; Pertsev, N.A., Arlt, G., Theory of the banded domain structure in coarse-grained ferroelectric ceramics (1992) Ferroelectrics, 132, pp. 27-40; Arlt, G., Dederichs, H., Herbiet, R., 90-domain wall relaxation in tetragonally distorted ferroelectric ceramics (1987) Ferroelectrics, 74, pp. 37-53; Shvartsman, V.V., Kholkin, A.L., Orlova, A., Kiselev, D., Bogomolov, A.A., Sternberg, A., Polar nanodomains and local ferroelectric phenomena in relaxor lead lanthanum zirconate titanate ceramics (2005) Appl Phys Lett, 86, p. 202907; Alkoy, E.M., Berksoy-Yavuz, A., Electrical properties and impedance spectroscopy of pure and copper-oxide-added potassium sodium niobate ceramics (2012) IEEE Trans Ultrason Ferroelectr Freq Control, 59, pp. 2121-2128; Cho, J.H., Lee, Y.H., Han, K.S., Chun, M.P., Nam, J.H., Kim, B.I., Effect of domain size on the coercive field of orthorhombic (Li,K,Na)NbO3 ceramics (2010) J Kor Phys Soc, 57, pp. 971-974; Balke, N., Maksymovych, P., Jesse, S., Herklotz, A., Tselev, A., Eom, C., Kravchenko, I.I., Kalinin, S.V., Differentiating ferroelectric and effects with scanning probe microscopy (2015) ACS Nano, 9, pp. 6484-6492; Shur, V.Y., Kinetics of polarization reversal in normal and relaxor ferroelectrics: relaxation effects (1998) Phase Transitions, 65, pp. 49-72; Rodriguez, B.J., Nemanich, R.J., Kingon, A., Gruverman, A., Kalinin, S.V., Terabe, K., Liu, X.Y., Kitamura, K., Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy (2005) Appl Phys Lett, 86, p. 012906; Pertsev, N.A., Kiselev, D.A., Bdikin, I.K., Kosec, M., Kholkin, A.L., Quasi-one-dimensional domain walls in ferroelectric ceramics: Evidence from domain dynamics and wall roughness measurements (2011) J Appl Phys, 110, p. 052001; Rosenman, G., Urenski, P., Agronin, A., Rosenwaks, Y., Molotskii, M., Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy (2003) Appl Phys Lett, 82, pp. 103-105; Miller, R.C., Weireich, G., Mechanism for the sidewise motion of 180° domain walls in barium titanate (1960) Phys Rev, 117, pp. 1460-1466; Baturin, I.S., Akhmatkhanov, A.R., Shur, V.Y., Nebogatikov, M.S., Dolbilov, M.A., Rodina, E.A., Characterization of bulk screening in single crystals of lithium niobate and lithium tantalate family (2008) Ferroelectrics, 374, pp. 1-13
Correspondence Address Turygin, A.P.; School of Natural Sciences and Mathematics, Ural Federal UniversityRussian Federation; email: anton.turygin@urfu.ru
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus