References |
Shimpi, N.G., Jain, S., Karmakar, N., Shah, A., Kothari, D.C., Mishra, S., Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor (2016) Appl. Surf. Sci., 390, p. 17; Wang, Y., Peng, Z., Wang, Q., Fu, X., Highly nonlinear varistors from oxygen-deficient zinc oxide thin films by hot-dipping in Bi2O3: influence of temperature (2016) Appl. Surf. Sci., 390, p. 92; Yildirim, O.A., Arslan, H., Sönmezoǧlu, S., Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts (2016) Appl. Surf. Sci., 390, p. 111; Yu, M., Ma, Y., Liu, J., Li, X., Li, S., Liu, S., Sub-coherent growth of ZnO nanorod arrays on three-dimensional graphene framework as one-bulk high-performance photocatalyst (2016) Appl. Surf. Sci., 390, p. 266; Balen, R., da Costa, W.V., de Lara Andrade, J., Piai, J.F., Muniz, E.C., Companhoni, M.V., Nakamura, T.U., Fernandes, D.M., Structural, thermal, optical properties and cytotoxicity of PMMA/ZnO fibers and films: Potential application in tissue engineering (2016) Appl. Surf. Sci., 385, p. 257; So, H., Senesky, D.G., ZnO nanorod arrays and direct wire bonding on GaN surfaces for rapid fabrication of antireflective, high-temperature ultraviolet sensors (2016) Appl. Surf. Sci., 387, p. 280; Ilyas, U., Lee, P., Tan, T.L., Chen, R., Anwar, A.W., Zhang, S., Sun, H.D., Rawat, R.S., Temperature-dependent stoichiometric alteration in ZnO: Mn nanostructured thin films for enhanced ferromagnetic response (2016) Appl. Surf. Sci., 387, p. 461; Chen, S., Chen, J., Liu, J., Qi, J., Yu, W., Enhanced field emission from ZnO nanowire arrays utilizing MgO buffer between seed layer and silicon substrate (2016) Appl. Surf. Sci., 387, p. 103; Wang, M., Yi, J., Yang, S., Cao, Z., Huang, X., Li, Y., Li, H., Zhong, J., Electrodeposition of Mg doped ZnO thin film for the window layer of CIGS solar cell (2016) Appl. Surf. Sci., 382, p. 217; Bera, S., Khan, H., Biswas, I., Jana, S., Polyaniline hybridized surface defective ZnO nanorods with long-term stable photoelectrochemical activity (2016) Appl. Surf. Sci., 383, p. 165; Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshnikov, M.A., Doǧan, S., Avrutin, V., Morkoç, H., A comprehensive review of ZnO materials and devices (2005) J. Appl. Phys., 98, p. 041301; Jaffe, J.E., Hess, A.C., Hartree-Fock study of phase changes in ZnO at high pressure (1993) Phys. Rev. B, 48, p. 7903; Jaffe, J.E., Snyder, J.A., Lin, Z., Hess, A.C., LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO (2000) Phys. Rev. B, 62, p. 1660; Mohammed, Y.S., International, J., (2015), 5 (1). , of Scientific and Res. Publications; Butler, K.T., Hendon, C.H., Walsh, A., Electronic structure modulation of metal–organic frameworks for hybrid devices (2014) ACS Appl. Mater. Interfaces, 6, p. 22044; Girard, R.T., Tjernberg, O., Chiaia, G., Söderholm, S., Karlsson, U.O., Wigren, C., Nylèn, H., Lindau, I., Electronic structure of ZnO (0001) studied by angle-resolved photoelectron spectroscopy (1997) Surf. Sci., 373, p. 409; Kohan, A.F., Ceder, G., Morgan, D., Van der Walle, C.G., First-principles study of native point defects in ZnO (2000) Phys. Rev. B, 61, p. 15019; Van der Walle, C.G., Defect analysis and engineering in ZnO (2001) Physica B, 308-310, p. 899; Zatsepin, D.A., Boukhvalov, D.W., Gavrilov, N.V., Kurmaev, E.Z., Shur, V.Y., Esin, A.A., Kim, S.S., Soft electronic structure modulation of surface (thin-film) and bulk (ceramics) morphologies of TiO2-host by Pb-implantation: XPS-and-DFT characterization (2017) Appl. Surf. Sci., 400, p. 110; Mazaheri, M., Hassanzadeh-Tabrizi, S.A., Sadrnezhaad, S.K., Hot pressing of nanocrystalline zinc oxide compacts: densification and grain growth during sintering (2009) Ceram. Int., 35, p. 991; Cui, L., Zhang, H.Y., Wang, G.G., Yang, F.X., Kuang, X.P., Sun, R., Han, J.C., Effect of annealing temperature and annealing atmosphere on the structure and optical properties of ZnO thin films on sapphire (0001) substrates by magnetron (2012) Appl. Surf. Sci., 258, p. 2479; Geward, L., Olsen, J.S., The high-pressure phase of zincite (1995) J. Synchrotron Radiat., 2, p. 233; Krasheninnikov, A.V., Nordlund, K., Ion and electron irradiation-induced effects in nanostructured materials (2010) J. Appl. Phys., 107, p. 071301; Standard Guide for Selection of Calibrations Needed for X-ray Photoelectron Spectroscopy Experiments Active Standard ASTM 2735-14, , http://www.astm.org/Standards/E2735.htm, reference decision of US Standard Subcommittee No. E42.03; http://srdata.nist.gov/xps/, NIST XPS Database (Web-version), rev. 4.1, (called 2016-07-21); http://xpssimplified.com/knowledgebase.php, Thermo Scientific XPS: Knowledge Base (Web-version), © 2013–2016 (called 2016-07-22); Crist, B.V., (2005) The PDF Handbooks of Monochromatic XPS Spectra, 2, p. 956. , http://www.xpsdata.com, (Web-version), Ed.: XPS International LLC, USA, (called 2016-07-23); Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys.: Condens. Matter, 14, pp. 2745-2779; Zatsepin, D.A., Boukhvalov, D.W., Gavrilov, N.V., Kurmaev, E.Z., Zhidkov, I.S., XPS and DFT study of pulsed Bi-implantation of bulk and thin-films of ZnO—The role of oxygen imperfections (2016) Appl. Surf. Sci., 387, p. 1093; Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868; Bengtsson, L., Dipole correction for surface supercell calculations (1999) Phys. Rev. B, 59, p. 12301; Troullier, O.N., Martins, J.L., Efficient pseudopotentials for plane-wave calculations (1991) Phys. Rev. B, 43, pp. 1993-2007; Monkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys. Rev. B, 13, pp. 5188-5192; Hashimoto, S., Tanaka, A., Alteration of Ti 2p XPS spectrum for titanium oxide by low-energy Ar ion bombardment (2002) Surf. Interface Anal., 34, p. 262; Biesinger, M.C., Lau, L.W.M., Gerson, A.R., St, R., Smart, C., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn (2010) Appl. Surf. Sci., 257, p. 887; Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R., St, R., Smart, C., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni (2011) Appl. Surf. Sci., 257, p. 2717; Hagelin-Weaver, H.A.E., Weaver, J.F., Hoflund, G.B., Salaita, G.N., Electron energy loss spectroscopic investigation of Ni metal and NiO before and after surface reduction by Ar+ bombardment (2004) J. Electron Spec. Rel. Phenom., 134, p. 139; Li, C.-H., Chen, J.-Z., Electrical, optical, and microstructural properties of sol–gel derived HfZnO thin films (2014) J. Alloys Comp., 601, p. 223; Cho, S., Yu, J., Kang, S.K., Shih, D.-Y., Electrical, optical, and microstructural properties of sol–gel derived HfZnO thin films (2005) J. Electron. Mater., 34, p. 635; Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters, , https://vuo.elettra.eu/services/elements/WebElements.html, (Web-version) Elettra, Italy (called 2016-09-29) |