XPS-and-DFT analyses of the Pb 4f — Zn 3s and Pb 5d — O 2s overlapped ambiguity contributions to the final electronic structure of bulk and thin-film Pb-modulated zincite / Zatsepin D.A., Boukhvalov D.W., Gavrilov N.V., Kurmaev E.Z., Zatsepin A.F., Cui L., Shur V.Y., Esin A.A. // Applied Surface Science. - 2017. - V. 405, l. . - P. 129-136.

ISSN:
01694332
Type:
Article
Abstract:
The electronic structures of zincite Pb-modulated bulk and thin-films were studied via X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) techniques. Both XPS data and DFT-calculations allowed the derivation of two different Pb-embedding scenarios into the ZnO-hosts. These included the high-interaction mode of Pb-impurity with initial zinc-oxygen host-lattice for the bulk morphology, accompanied with low Pb-metal losses; and the low-interaction mode for thin-films, where there was intake of Pb-impurities into the hollows of the surface. Despite dissimilar mechanisms of Pb-impurity accumulation and distribution in the bulk and thin-films zincite host-matrices, the strong Pb 4f — Zn 3s and Pb 5d — O 2s overlapped ambiguity contribution to the appropriate core-level structure and valence bands was established by XPS analysis and reproduced with the help of DFT-calculations. It was shown that the microscopic structure of the embedded lead-impurity played a crucial role in the Pb ion-beam stimulated synthesis of secondary lead-oxygen phases via large-area defect fabrication, and the difference among zincite and wurzite polymorphs played almost no role in this case. © 2017 Elsevier B.V.
Author keywords:
Clusterization; DFT modeling; Ion implantation; Lead; Zinc oxide; Zincite
Index keywords:
Density functional theory; Electronic structure; Impurities; Ion beams; Ion implantation; Lead; Thin films; Zinc; Zinc oxide; Bulk morphologies; Clusterization; DFT calculation; DFT modeling; Impurity
DOI:
10.1016/j.apsusc.2017.01.310
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013141257&doi=10.1016%2fj.apsusc.2017.01.310&partnerID=40&md5=5c365c309eff2ea71b96101787934da3
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013141257&doi=10.1016%2fj.apsusc.2017.01.310&partnerID=40&md5=5c365c309eff2ea71b96101787934da3
Affiliations M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation; Institute of Physics and Technology, Ural Federal University, Yekaterinburg, Russian Federation; Department of Chemistry, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul, South Korea; Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, Yekaterinburg, Russian Federation; Institute of Electrophysics, Russian Academy of Sciences, Ural Branch, Yekaterinburg, Russian Federation; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China; Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave, Yekaterinburg, Russian Federation
Author Keywords Clusterization; DFT modeling; Ion implantation; Lead; Zinc oxide; Zincite
References Shimpi, N.G., Jain, S., Karmakar, N., Shah, A., Kothari, D.C., Mishra, S., Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor (2016) Appl. Surf. Sci., 390, p. 17; Wang, Y., Peng, Z., Wang, Q., Fu, X., Highly nonlinear varistors from oxygen-deficient zinc oxide thin films by hot-dipping in Bi2O3: influence of temperature (2016) Appl. Surf. Sci., 390, p. 92; Yildirim, O.A., Arslan, H., Sönmezoǧlu, S., Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts (2016) Appl. Surf. Sci., 390, p. 111; Yu, M., Ma, Y., Liu, J., Li, X., Li, S., Liu, S., Sub-coherent growth of ZnO nanorod arrays on three-dimensional graphene framework as one-bulk high-performance photocatalyst (2016) Appl. Surf. Sci., 390, p. 266; Balen, R., da Costa, W.V., de Lara Andrade, J., Piai, J.F., Muniz, E.C., Companhoni, M.V., Nakamura, T.U., Fernandes, D.M., Structural, thermal, optical properties and cytotoxicity of PMMA/ZnO fibers and films: Potential application in tissue engineering (2016) Appl. Surf. Sci., 385, p. 257; So, H., Senesky, D.G., ZnO nanorod arrays and direct wire bonding on GaN surfaces for rapid fabrication of antireflective, high-temperature ultraviolet sensors (2016) Appl. Surf. Sci., 387, p. 280; Ilyas, U., Lee, P., Tan, T.L., Chen, R., Anwar, A.W., Zhang, S., Sun, H.D., Rawat, R.S., Temperature-dependent stoichiometric alteration in ZnO: Mn nanostructured thin films for enhanced ferromagnetic response (2016) Appl. Surf. Sci., 387, p. 461; Chen, S., Chen, J., Liu, J., Qi, J., Yu, W., Enhanced field emission from ZnO nanowire arrays utilizing MgO buffer between seed layer and silicon substrate (2016) Appl. Surf. Sci., 387, p. 103; Wang, M., Yi, J., Yang, S., Cao, Z., Huang, X., Li, Y., Li, H., Zhong, J., Electrodeposition of Mg doped ZnO thin film for the window layer of CIGS solar cell (2016) Appl. Surf. Sci., 382, p. 217; Bera, S., Khan, H., Biswas, I., Jana, S., Polyaniline hybridized surface defective ZnO nanorods with long-term stable photoelectrochemical activity (2016) Appl. Surf. Sci., 383, p. 165; Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshnikov, M.A., Doǧan, S., Avrutin, V., Morkoç, H., A comprehensive review of ZnO materials and devices (2005) J. Appl. Phys., 98, p. 041301; Jaffe, J.E., Hess, A.C., Hartree-Fock study of phase changes in ZnO at high pressure (1993) Phys. Rev. B, 48, p. 7903; Jaffe, J.E., Snyder, J.A., Lin, Z., Hess, A.C., LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO (2000) Phys. Rev. B, 62, p. 1660; Mohammed, Y.S., International, J., (2015), 5 (1). , of Scientific and Res. Publications; Butler, K.T., Hendon, C.H., Walsh, A., Electronic structure modulation of metal–organic frameworks for hybrid devices (2014) ACS Appl. Mater. Interfaces, 6, p. 22044; Girard, R.T., Tjernberg, O., Chiaia, G., Söderholm, S., Karlsson, U.O., Wigren, C., Nylèn, H., Lindau, I., Electronic structure of ZnO (0001) studied by angle-resolved photoelectron spectroscopy (1997) Surf. Sci., 373, p. 409; Kohan, A.F., Ceder, G., Morgan, D., Van der Walle, C.G., First-principles study of native point defects in ZnO (2000) Phys. Rev. B, 61, p. 15019; Van der Walle, C.G., Defect analysis and engineering in ZnO (2001) Physica B, 308-310, p. 899; Zatsepin, D.A., Boukhvalov, D.W., Gavrilov, N.V., Kurmaev, E.Z., Shur, V.Y., Esin, A.A., Kim, S.S., Soft electronic structure modulation of surface (thin-film) and bulk (ceramics) morphologies of TiO2-host by Pb-implantation: XPS-and-DFT characterization (2017) Appl. Surf. Sci., 400, p. 110; Mazaheri, M., Hassanzadeh-Tabrizi, S.A., Sadrnezhaad, S.K., Hot pressing of nanocrystalline zinc oxide compacts: densification and grain growth during sintering (2009) Ceram. Int., 35, p. 991; Cui, L., Zhang, H.Y., Wang, G.G., Yang, F.X., Kuang, X.P., Sun, R., Han, J.C., Effect of annealing temperature and annealing atmosphere on the structure and optical properties of ZnO thin films on sapphire (0001) substrates by magnetron (2012) Appl. Surf. Sci., 258, p. 2479; Geward, L., Olsen, J.S., The high-pressure phase of zincite (1995) J. Synchrotron Radiat., 2, p. 233; Krasheninnikov, A.V., Nordlund, K., Ion and electron irradiation-induced effects in nanostructured materials (2010) J. Appl. Phys., 107, p. 071301; Standard Guide for Selection of Calibrations Needed for X-ray Photoelectron Spectroscopy Experiments Active Standard ASTM 2735-14, , http://www.astm.org/Standards/E2735.htm, reference decision of US Standard Subcommittee No. E42.03; http://srdata.nist.gov/xps/, NIST XPS Database (Web-version), rev. 4.1, (called 2016-07-21); http://xpssimplified.com/knowledgebase.php, Thermo Scientific XPS: Knowledge Base (Web-version), © 2013–2016 (called 2016-07-22); Crist, B.V., (2005) The PDF Handbooks of Monochromatic XPS Spectra, 2, p. 956. , http://www.xpsdata.com, (Web-version), Ed.: XPS International LLC, USA, (called 2016-07-23); Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys.: Condens. Matter, 14, pp. 2745-2779; Zatsepin, D.A., Boukhvalov, D.W., Gavrilov, N.V., Kurmaev, E.Z., Zhidkov, I.S., XPS and DFT study of pulsed Bi-implantation of bulk and thin-films of ZnO—The role of oxygen imperfections (2016) Appl. Surf. Sci., 387, p. 1093; Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868; Bengtsson, L., Dipole correction for surface supercell calculations (1999) Phys. Rev. B, 59, p. 12301; Troullier, O.N., Martins, J.L., Efficient pseudopotentials for plane-wave calculations (1991) Phys. Rev. B, 43, pp. 1993-2007; Monkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys. Rev. B, 13, pp. 5188-5192; Hashimoto, S., Tanaka, A., Alteration of Ti 2p XPS spectrum for titanium oxide by low-energy Ar ion bombardment (2002) Surf. Interface Anal., 34, p. 262; Biesinger, M.C., Lau, L.W.M., Gerson, A.R., St, R., Smart, C., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn (2010) Appl. Surf. Sci., 257, p. 887; Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R., St, R., Smart, C., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni (2011) Appl. Surf. Sci., 257, p. 2717; Hagelin-Weaver, H.A.E., Weaver, J.F., Hoflund, G.B., Salaita, G.N., Electron energy loss spectroscopic investigation of Ni metal and NiO before and after surface reduction by Ar+ bombardment (2004) J. Electron Spec. Rel. Phenom., 134, p. 139; Li, C.-H., Chen, J.-Z., Electrical, optical, and microstructural properties of sol–gel derived HfZnO thin films (2014) J. Alloys Comp., 601, p. 223; Cho, S., Yu, J., Kang, S.K., Shih, D.-Y., Electrical, optical, and microstructural properties of sol–gel derived HfZnO thin films (2005) J. Electron. Mater., 34, p. 635; Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters, , https://vuo.elettra.eu/services/elements/WebElements.html, (Web-version) Elettra, Italy (called 2016-09-29)
Correspondence Address Boukhvalov, D.W.; Department of Chemistry, Hanyang University, 17 Haengdang-dong, Seongdong-gu, South Korea; email: danil@hanyang.ac.kr
Publisher Elsevier B.V.
CODEN ASUSE
Language of Original Document English
Abbreviated Source Title Appl Surf Sci
Source Scopus