Raman spectroscopy, “big data”, and local heterogeneity of solid state synthesized lithium titanate / Pelegov D.V., Slautin B.N., Gorshkov V.S., Zelenovskiy P.S., Kiselev E.A., Kholkin A.L., Shur V.Y. // Journal of Power Sources. - 2017. - V. 346, l. . - P. 143-150.

ISSN:
03787753
Type:
Article
Abstract:
Existence of defects is an inherent property of real materials. Due to an explicit correlation between defects concentration and conductivity, it is important to understand the level and origins of the structural heterogeneity for any particulate electrode material. Poor conductive lithium titanate Li4Ti5O12(LTO), widely used in batteries for grids and electric buses, needs it like no one else. In this work, structural heterogeneity of compacted lithium titanate is measured locally in 100 different points by conventional micro-Raman technique, characterized in terms of variation of Raman spectra parameters and interpreted using our version of “big data” analysis. This very simple approach with automated measurement and treatment has allowed us to demonstrate inherent heterogeneity of solid-state synthesized LTO and attribute it to the existence of lithium and oxygen vacancies. The proposed approach can be used as a fast, convenient, and cost-effective defects-probing tool for a wide range of materials with defects-sensitive properties. In case of LTO, such an approach can be used to increase its charge/discharge rates by synthesis of materials with controlled nonstoichiometry. New approaches to solid state synthesis of LTO, suitable for high-power applications, will help to significantly reduce the costs of batteries for heavy-duty electric vehicles and smart-grids. © 2017 Elsevier B.V.
Author keywords:
Automated experiment; Li4Ti5O12; Lithium vacancies; Negative electrode material; Nonstoichiometry; Oxygen vacancies
Index keywords:
Big data; Cost effectiveness; Electric batteries; Electric power transmission networks; Electrochemical electrodes; Electrodes; Lithium; Lithium-ion batteries; Oxygen vacancies; Secondary batteries; S
DOI:
10.1016/j.jpowsour.2017.02.024
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013059152&doi=10.1016%2fj.jpowsour.2017.02.024&partnerID=40&md5=e2d98da974cbf23e968e86bee0daa128
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013059152&doi=10.1016%2fj.jpowsour.2017.02.024&partnerID=40&md5=e2d98da974cbf23e968e86bee0daa128
Affiliations School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federation; JSC Eliont, Ekaterinburg, Russian Federation; Department of Physics and CICECO – Materials Institute of Aveiro, University of Aveiro, Aveiro, Portugal
Author Keywords Automated experiment; Li4Ti5O12; Lithium vacancies; Negative electrode material; Nonstoichiometry; Oxygen vacancies
References Zaghib, K., Dontigny, M., Guerfi, A., Charest, P., Rodrigues, I., Mauger, A., Safe and fast-charging Li-ion battery with long shelf life for power applications (2011) J. Power Sources, 196, pp. 3949-3954; Young, D., Ransil, A., Amin, R., Li, Z., Chiang, Y.-M., Electronic conductivity in the Li4/3Ti5/3O4 - Li7/3Ti5/3O4 system and variation with state-of-charge as a Li battery anode (2013) Adv. Energy Mater, 3, pp. 1125-1129; Horiba, T., Lithium-ion battery systems (2014) Proc. IEEE, 102, pp. 939-950; Han, X., Ouyang, M., Lu, L., Li, J., Cycle life of commercial lithium-ion batteries with lithium titanium oxide anodes in electric vehicles (2014) Energies, 7, pp. 4895-4909; Qin, N., Gusrialdi, A., Paul Brooker, R., T-Raissi, A., Numerical analysis of electric bus fast charging strategies for demand charge reduction (2016) Transp. Res. Part A Policy Pract., 94, pp. 386-396; Sun, Y.-K., Jung, D.-J., Lee, Y.S., Nahm, K.S., Synthesis and electrochemical characterization of spinel Li[Li(1−x)/3CrxTi(5−2x)/3]O4 anode materials (2004) J. Power Sources, 125, pp. 242-245; Nakahara, K., Nakajima, R., Matsushima, T., Majima, H., Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells (2003) J. Power Sources, 117, pp. 131-136; Guerfi, A., Charest, P., Kinoshita, K., Perrier, M., Zaghib, K., Nano electronically conductive titanium-spinel as lithium ion storage negative electrode (2004) J. Power Sources, 126, pp. 163-168; Chen, C.H., Vaughey, J.T., Jansen, A.N., Dees, D.W., Kahaian, A.J., Goacher, T., Studies of Mg-substituted Li4−xMgxTi5O12 spinel electrodes (0≤x≤1) for lithium batteries (2001) J. Electrochem. Soc., 148, pp. A102-A104; Huang, Z., Wang, D., Zhang, C., He, D., Effects of different doping sites on the structure and performance of Li4Ti5O12 material (2014) Prog. Chem., 26, pp. 1914-1923; Song, M.-S., Benayad, A., Choi, Y.-M., Park, K.-S., Does Li4Ti5O12 need carbon in lithium ion batteries? Carbon-free electrode with exceptionally high electrode capacity (2012) Chem. Commun., 48, pp. 516-518; Kim, C., Norberg, N.S., Alexander, C.T., Kostecki, R., Cabana, J., Mechanism of phase propagation during lithiation in carbon-free Li4Ti5O12 battery electrodes (2013) Adv. Funct. Mater, 23, pp. 1214-1222; Wolfenstine, J., Lee, U., Allen, J.L., Electrical conductivity and rate-capability of Li4Ti5O12 as a function of heat-treatment atmosphere (2006) J. Power Sources, 154, pp. 287-289; Allen, J.L., Jow, T.R., Wolfenstine, J., Low temperature performance of nanophase Li4Ti5O12 (2006) J. Power Sources, 159, pp. 1340-1345; Proskuryakova, E.V., Kondratov, O.I., Porotnikov, N.V., Petrov, K.I., Vibration spectra of lithium titanate with spinel structure (in Russian) (1983) Zh. Neorg. Khim, 28, pp. 1402-1406; Leonidov, I.A., Leonidova, O.N., Perelyaeva, L.A., Samigullina, R.F., Kovyazina, S.A., Patrakeev, M.V., Structure, ionic conduction, and phase transformations in lithium titanate Li4Ti5O12 (2003) Phys. Solid State, 45, pp. 2183-2188; Julien, C.M., Massot, M., Zaghib, K., Structural studies of Li4/3Me5/3O4 (Me = Ti, Mn) electrode materials: local structure and electrochemical aspects (2004) J. Power Sources, 136, pp. 72-79; Aldon, L., Kubiak, P., Womes, M., Jumas, J.C., Olivier-Fourcade, J., Tirado, J.L., Chemical and electrochemical Li-Insertion into the Li4Ti5O12 spinel (2004) Chem. Mater, 16, pp. 5721-5725; Ziatdinov, M., Fujii, S., Kiguchi, M., Enoki, T., Jesse, S., Kalinin, S.V., Data mining graphene: correlative analysis of structure and electronic degrees of freedom in graphenic monolayers with defects (2016) Nanotechnology, 27, p. 495703; Mukai, K., Kato, Y., Role of oxide ions in thermally activated lithium diffusion of Li[Li1/3Ti5/3]O4: X-ray diffraction measurements and Raman spectroscopy (2015) J. Phys. Chem. C, 119, pp. 10273-10281; Mukai, K., Kato, Y., Nakano, H., Understanding the zero-strain lithium insertion scheme of Li[Li1/3Ti5/3]O4: structural changes at atomic scale clarified by Raman spectroscopy (2014) J. Phys. Chem. C, 118, pp. 2992-2999; Mukai, K., Ariyoshi, K., Ohzuku, T., Comparative study of Li[CrTi]O4, Li[Li1/3Ti5/3]O4 and Li1/2Fe1/2[Li1/2Fe1/2Ti]O4 in non-aqueous lithium cells (2005) J. Power Sources, 146, pp. 213-216; Burba, C.M., Palmer, J.M., Holinsworth, B.S., Laser-induced phase changes in olivine FePO4: a warning on characterizing LiFePO4-based cathodes with Raman spectroscopy (2009) J. Raman Spectrosc., 40, pp. 225-228; Pelegov, D.V., Slautin, B.N., Zelenovskiy, P.S., Kuznetsov, D.K., Kiselev, E.A., Alikin, D.O., Single particle structure characterization of solid-state synthesized Li4Ti5O12 (2017) J. Raman Spectrosc., 48, pp. 278-283; Kellerman, D.G., Mukhina, N.A., Zhuravlev, N.A., Valova, M.S., Gorshkov, V.S., Optical absorption and nuclear magnetic resonance in lithium titanium spinel doped by chromium (2010) Phys. Solid State, 52, pp. 459-464; Kellerman, D.G., Gorshkov, V.S., Shalaeva, E.V., Tsaryev, B.A., Vovkotrub, E.G., Structure peculiarities of carbon-coated lithium titanate: Raman spectroscopy and electron microscopic study (2012) Solid State Sci., 14, pp. 72-79; Knyazev, A.V., Smirnova, N.N., Mączka, M., Knyazeva, S.S., Letyanina, I.A., Thermodynamic and spectroscopic properties of spinel with the formula Li4/3Ti5/3O4 (2013) Thermochim. Acta, 559, pp. 40-45; Michalska, M., Krajewski, M., Ziolkowska, D., Hamankiewicz, B., Andrzejczuk, M., Lipinska, L., Influence of milling time in solid-state synthesis on structure, morphology and electrochemical properties of Li4Ti5O12 of spinel structure (2014) Powder Technol., 266, pp. 372-377; Zhu, Y.-R., Yuan, J., Zhu, M., Hao, G., Yi, T.-F., Xie, Y., Improved electrochemical properties of Li4Ti5O12–Li0.33La0.56TiO3 composite anodes prepared by a solid-state synthesis (2015) J. Alloys Compd., 646, pp. 612-619; Li, J., Li, W., Dong, H., Li, N., Guo, X., Wang, L., Enhanced performance in hybrid perovskite solar cell by modification with spinel lithium titanate (2015) J. Mater. Chem. A, 3, pp. 8882-8889; Huang, R., Ikuhara, Y.H., Mizoguchi, T., Findlay, S.D., Kuwabara, A., Fisher, C.A.J., Oxygen-vacancy ordering at surfaces of lithium manganese(III,IV) oxide spinel nanoparticles (2011) Angew. Chem. Int. Ed., 50, pp. 3053-3057; Song, J., Shin, D.W., Lu, Y., Amos, C.D., Manthiram, A., Goodenough, J.B., Role of oxygen vacancies on the performance of Li[Ni0.5– xMn1.5+ x]O4 ( x = 0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries (2012) Chem. Mater, 24, pp. 3101-3109; Gao, X., Ikuhara, Y.H., Fisher, C.A.J., Moriwake, H., Kuwabara, A., Oki, H., Structural distortion and compositional gradients adjacent to epitaxial LiMn2O4 thin film interfaces (2014) Adv. Mater. Interfaces, 1, p. 1400143; Gao, L., Li, S., Huang, D., Shen, Y., Wang, M., Porous Li4Ti5O12 –TiO2 nanosheet arrays for high-performance lithium-ion batteries (2015) J. Mater. Chem. A, 3, pp. 10107-10113; Balogun, M.-S., Zhu, Y., Qiu, W., Luo, Y., Huang, Y., Liang, C., Chemically lithiated TiO2 heterostructured nanosheet anode with excellent rate capability and long cycle life for high-performance lithium-ion batteries (2015) ACS Appl. Mater. Interfaces, 7, pp. 25991-26003; Wang, C., Wang, S., Tang, L., He, Y.-B., Gan, L., Li, J., A robust strategy for crafting monodisperse Li4Ti5O12 nanospheres as superior rate anode for lithium ion batteries (2016) Nano Energy, 21, pp. 133-144; He, Y.-B., Li, B., Liu, M., Zhang, C., Lv, W., Yang, C., Gassing in Li4Ti5O12-based batteries and its remedy (2012) Sci. Rep., 2, p. 913; Wang, J., Zhao, H., Yang, Q., Wang, C., Lv, P., Xia, Q., Li4Ti5O12–TiO2 composite anode material for lithium-ion batteries (2013) J. Power Sources, 222, pp. 196-201; Jiang, Y.-M., Wang, K.-X., Zhang, H.-J., Wang, J.-F., Chen, J.-S., Hierarchical Li4Ti5O12/TiO2 composite tubes with regular structural imperfection for lithium ion storage (2013) Sci. Rep., 3, p. 3490; Chen, M., Sun, X., Qiao, Z., Ma, Q., Wang, C., Anatase-TiO2 nanocoating of Li4Ti5O12 nanorod anode for lithium-ion batteries (2014) J. Alloys Compd., 601, pp. 38-42; Guo, J., Zuo, W., Cai, Y., Chen, S., Zhang, S., Liu, J., A novel Li4Ti5O12-based high-performance lithium-ion electrode at elevated temperature (2015) J. Mater. Chem. A, 3, pp. 4938-4944; Yang, L., Li, H., Liu, J., Lu, Y., Li, S., Min, J., Effects of TiO2 phase on the performance of Li4Ti5O12 anode for lithium-ion batteries (2016) J. Alloys Compd., 689, pp. 812-819; Jirkovský, J., Macounová, K., Dietz, H., Plieth, W., Krtil, P., Záliš, S., Raman spectroscopy of nanocrystalline Li-Ti-O spinels and comparative DFT calculations on TiyOz and LixTiyOz clusters (2007) Collect. Czechoslov. Chem. Commun., 72, pp. 171-184; Tsai, P.-C., Hsu, W.-D., Lin, S.-K., Atomistic structure and ab initio electrochemical properties of Li4Ti5O12 defect spinel for Li ion batteries (2014) J. Electrochem. Soc., 161, pp. A439-A444; Tanaka, S., Kitta, M., Tamura, T., Maeda, Y., Akita, T., Kohyama, M., Atomic and electronic structures of Li4Ti5O12/Li7Ti5O12 (001) interfaces by first-principles calculations (2014) J. Mater. Sci., 49, pp. 4032-4037; Ganapathy, S., Vasileiadis, A., Heringa, J.R., Wagemaker, M., The fine line between a two-phase and solid-solution phase transformation and highly mobile phase interfaces in spinel Li4+ xTi5O12 (2017) Adv. Energy Mater, p. 1601781; Kitta, M., Akita, T., Maeda, Y., Kohyama, M., Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy (2012) Langmuir, 28, pp. 12384-12392; Kitta, M., Akita, T., Tanaka, S., Kohyama, M., Two-phase separation in a lithiated spinel Li4Ti5O12 crystal as confirmed by electron energy-loss spectroscopy (2014) J. Power Sources, 257, pp. 120-125; Borghols, W.J.H., Wagemaker, M., Lafont, U., Kelder, E.M., Mulder, F.M., Size effects in the Li4+xTi5O12 spinel (2009) J. Am. Chem. Soc., 131, pp. 17786-17792; Yoshikawa, D., Kadoma, Y., Kim, J.-M., Ui, K., Kumagai, N., Kitamura, N., Spray-drying synthesized lithium-excess Li4+xTi5−xO12−δ and its electrochemical property as negative electrode material for Li-ion batteries (2010) Electrochim. Acta, 55, pp. 1872-1879; Hao, X., Lin, X., Lu, W., Bartlett, B.M., Oxygen vacancies lead to loss of domain order, particle fracture, and rapid capacity fade in lithium manganospinel (LiMn2O4) batteries (2014) ACS Appl. Mater. Interfaces, 6, pp. 10849-10857
Correspondence Address Pelegov, D.V.; School of Natural Sciences and Mathematics, Ural Federal UniversityRussian Federation; email: dmitry.pelegov@urfu.ru
Publisher Elsevier B.V.
CODEN JPSOD
Language of Original Document English
Abbreviated Source Title J Power Sources
Source Scopus