References |
Zaghib, K., Dontigny, M., Guerfi, A., Charest, P., Rodrigues, I., Mauger, A., Safe and fast-charging Li-ion battery with long shelf life for power applications (2011) J. Power Sources, 196, pp. 3949-3954; Young, D., Ransil, A., Amin, R., Li, Z., Chiang, Y.-M., Electronic conductivity in the Li4/3Ti5/3O4 - Li7/3Ti5/3O4 system and variation with state-of-charge as a Li battery anode (2013) Adv. Energy Mater, 3, pp. 1125-1129; Horiba, T., Lithium-ion battery systems (2014) Proc. IEEE, 102, pp. 939-950; Han, X., Ouyang, M., Lu, L., Li, J., Cycle life of commercial lithium-ion batteries with lithium titanium oxide anodes in electric vehicles (2014) Energies, 7, pp. 4895-4909; Qin, N., Gusrialdi, A., Paul Brooker, R., T-Raissi, A., Numerical analysis of electric bus fast charging strategies for demand charge reduction (2016) Transp. Res. Part A Policy Pract., 94, pp. 386-396; Sun, Y.-K., Jung, D.-J., Lee, Y.S., Nahm, K.S., Synthesis and electrochemical characterization of spinel Li[Li(1−x)/3CrxTi(5−2x)/3]O4 anode materials (2004) J. Power Sources, 125, pp. 242-245; Nakahara, K., Nakajima, R., Matsushima, T., Majima, H., Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells (2003) J. Power Sources, 117, pp. 131-136; Guerfi, A., Charest, P., Kinoshita, K., Perrier, M., Zaghib, K., Nano electronically conductive titanium-spinel as lithium ion storage negative electrode (2004) J. Power Sources, 126, pp. 163-168; Chen, C.H., Vaughey, J.T., Jansen, A.N., Dees, D.W., Kahaian, A.J., Goacher, T., Studies of Mg-substituted Li4−xMgxTi5O12 spinel electrodes (0≤x≤1) for lithium batteries (2001) J. Electrochem. Soc., 148, pp. A102-A104; Huang, Z., Wang, D., Zhang, C., He, D., Effects of different doping sites on the structure and performance of Li4Ti5O12 material (2014) Prog. Chem., 26, pp. 1914-1923; Song, M.-S., Benayad, A., Choi, Y.-M., Park, K.-S., Does Li4Ti5O12 need carbon in lithium ion batteries? Carbon-free electrode with exceptionally high electrode capacity (2012) Chem. Commun., 48, pp. 516-518; Kim, C., Norberg, N.S., Alexander, C.T., Kostecki, R., Cabana, J., Mechanism of phase propagation during lithiation in carbon-free Li4Ti5O12 battery electrodes (2013) Adv. Funct. Mater, 23, pp. 1214-1222; Wolfenstine, J., Lee, U., Allen, J.L., Electrical conductivity and rate-capability of Li4Ti5O12 as a function of heat-treatment atmosphere (2006) J. Power Sources, 154, pp. 287-289; Allen, J.L., Jow, T.R., Wolfenstine, J., Low temperature performance of nanophase Li4Ti5O12 (2006) J. Power Sources, 159, pp. 1340-1345; Proskuryakova, E.V., Kondratov, O.I., Porotnikov, N.V., Petrov, K.I., Vibration spectra of lithium titanate with spinel structure (in Russian) (1983) Zh. Neorg. Khim, 28, pp. 1402-1406; Leonidov, I.A., Leonidova, O.N., Perelyaeva, L.A., Samigullina, R.F., Kovyazina, S.A., Patrakeev, M.V., Structure, ionic conduction, and phase transformations in lithium titanate Li4Ti5O12 (2003) Phys. Solid State, 45, pp. 2183-2188; Julien, C.M., Massot, M., Zaghib, K., Structural studies of Li4/3Me5/3O4 (Me = Ti, Mn) electrode materials: local structure and electrochemical aspects (2004) J. Power Sources, 136, pp. 72-79; Aldon, L., Kubiak, P., Womes, M., Jumas, J.C., Olivier-Fourcade, J., Tirado, J.L., Chemical and electrochemical Li-Insertion into the Li4Ti5O12 spinel (2004) Chem. Mater, 16, pp. 5721-5725; Ziatdinov, M., Fujii, S., Kiguchi, M., Enoki, T., Jesse, S., Kalinin, S.V., Data mining graphene: correlative analysis of structure and electronic degrees of freedom in graphenic monolayers with defects (2016) Nanotechnology, 27, p. 495703; Mukai, K., Kato, Y., Role of oxide ions in thermally activated lithium diffusion of Li[Li1/3Ti5/3]O4: X-ray diffraction measurements and Raman spectroscopy (2015) J. Phys. Chem. C, 119, pp. 10273-10281; Mukai, K., Kato, Y., Nakano, H., Understanding the zero-strain lithium insertion scheme of Li[Li1/3Ti5/3]O4: structural changes at atomic scale clarified by Raman spectroscopy (2014) J. Phys. Chem. C, 118, pp. 2992-2999; Mukai, K., Ariyoshi, K., Ohzuku, T., Comparative study of Li[CrTi]O4, Li[Li1/3Ti5/3]O4 and Li1/2Fe1/2[Li1/2Fe1/2Ti]O4 in non-aqueous lithium cells (2005) J. Power Sources, 146, pp. 213-216; Burba, C.M., Palmer, J.M., Holinsworth, B.S., Laser-induced phase changes in olivine FePO4: a warning on characterizing LiFePO4-based cathodes with Raman spectroscopy (2009) J. Raman Spectrosc., 40, pp. 225-228; Pelegov, D.V., Slautin, B.N., Zelenovskiy, P.S., Kuznetsov, D.K., Kiselev, E.A., Alikin, D.O., Single particle structure characterization of solid-state synthesized Li4Ti5O12 (2017) J. Raman Spectrosc., 48, pp. 278-283; Kellerman, D.G., Mukhina, N.A., Zhuravlev, N.A., Valova, M.S., Gorshkov, V.S., Optical absorption and nuclear magnetic resonance in lithium titanium spinel doped by chromium (2010) Phys. Solid State, 52, pp. 459-464; Kellerman, D.G., Gorshkov, V.S., Shalaeva, E.V., Tsaryev, B.A., Vovkotrub, E.G., Structure peculiarities of carbon-coated lithium titanate: Raman spectroscopy and electron microscopic study (2012) Solid State Sci., 14, pp. 72-79; Knyazev, A.V., Smirnova, N.N., Mączka, M., Knyazeva, S.S., Letyanina, I.A., Thermodynamic and spectroscopic properties of spinel with the formula Li4/3Ti5/3O4 (2013) Thermochim. Acta, 559, pp. 40-45; Michalska, M., Krajewski, M., Ziolkowska, D., Hamankiewicz, B., Andrzejczuk, M., Lipinska, L., Influence of milling time in solid-state synthesis on structure, morphology and electrochemical properties of Li4Ti5O12 of spinel structure (2014) Powder Technol., 266, pp. 372-377; Zhu, Y.-R., Yuan, J., Zhu, M., Hao, G., Yi, T.-F., Xie, Y., Improved electrochemical properties of Li4Ti5O12–Li0.33La0.56TiO3 composite anodes prepared by a solid-state synthesis (2015) J. Alloys Compd., 646, pp. 612-619; Li, J., Li, W., Dong, H., Li, N., Guo, X., Wang, L., Enhanced performance in hybrid perovskite solar cell by modification with spinel lithium titanate (2015) J. Mater. Chem. A, 3, pp. 8882-8889; Huang, R., Ikuhara, Y.H., Mizoguchi, T., Findlay, S.D., Kuwabara, A., Fisher, C.A.J., Oxygen-vacancy ordering at surfaces of lithium manganese(III,IV) oxide spinel nanoparticles (2011) Angew. Chem. Int. Ed., 50, pp. 3053-3057; Song, J., Shin, D.W., Lu, Y., Amos, C.D., Manthiram, A., Goodenough, J.B., Role of oxygen vacancies on the performance of Li[Ni0.5– xMn1.5+ x]O4 ( x = 0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries (2012) Chem. Mater, 24, pp. 3101-3109; Gao, X., Ikuhara, Y.H., Fisher, C.A.J., Moriwake, H., Kuwabara, A., Oki, H., Structural distortion and compositional gradients adjacent to epitaxial LiMn2O4 thin film interfaces (2014) Adv. Mater. Interfaces, 1, p. 1400143; Gao, L., Li, S., Huang, D., Shen, Y., Wang, M., Porous Li4Ti5O12 –TiO2 nanosheet arrays for high-performance lithium-ion batteries (2015) J. Mater. Chem. A, 3, pp. 10107-10113; Balogun, M.-S., Zhu, Y., Qiu, W., Luo, Y., Huang, Y., Liang, C., Chemically lithiated TiO2 heterostructured nanosheet anode with excellent rate capability and long cycle life for high-performance lithium-ion batteries (2015) ACS Appl. Mater. Interfaces, 7, pp. 25991-26003; Wang, C., Wang, S., Tang, L., He, Y.-B., Gan, L., Li, J., A robust strategy for crafting monodisperse Li4Ti5O12 nanospheres as superior rate anode for lithium ion batteries (2016) Nano Energy, 21, pp. 133-144; He, Y.-B., Li, B., Liu, M., Zhang, C., Lv, W., Yang, C., Gassing in Li4Ti5O12-based batteries and its remedy (2012) Sci. Rep., 2, p. 913; Wang, J., Zhao, H., Yang, Q., Wang, C., Lv, P., Xia, Q., Li4Ti5O12–TiO2 composite anode material for lithium-ion batteries (2013) J. Power Sources, 222, pp. 196-201; Jiang, Y.-M., Wang, K.-X., Zhang, H.-J., Wang, J.-F., Chen, J.-S., Hierarchical Li4Ti5O12/TiO2 composite tubes with regular structural imperfection for lithium ion storage (2013) Sci. Rep., 3, p. 3490; Chen, M., Sun, X., Qiao, Z., Ma, Q., Wang, C., Anatase-TiO2 nanocoating of Li4Ti5O12 nanorod anode for lithium-ion batteries (2014) J. Alloys Compd., 601, pp. 38-42; Guo, J., Zuo, W., Cai, Y., Chen, S., Zhang, S., Liu, J., A novel Li4Ti5O12-based high-performance lithium-ion electrode at elevated temperature (2015) J. Mater. Chem. A, 3, pp. 4938-4944; Yang, L., Li, H., Liu, J., Lu, Y., Li, S., Min, J., Effects of TiO2 phase on the performance of Li4Ti5O12 anode for lithium-ion batteries (2016) J. Alloys Compd., 689, pp. 812-819; Jirkovský, J., Macounová, K., Dietz, H., Plieth, W., Krtil, P., Záliš, S., Raman spectroscopy of nanocrystalline Li-Ti-O spinels and comparative DFT calculations on TiyOz and LixTiyOz clusters (2007) Collect. Czechoslov. Chem. Commun., 72, pp. 171-184; Tsai, P.-C., Hsu, W.-D., Lin, S.-K., Atomistic structure and ab initio electrochemical properties of Li4Ti5O12 defect spinel for Li ion batteries (2014) J. Electrochem. Soc., 161, pp. A439-A444; Tanaka, S., Kitta, M., Tamura, T., Maeda, Y., Akita, T., Kohyama, M., Atomic and electronic structures of Li4Ti5O12/Li7Ti5O12 (001) interfaces by first-principles calculations (2014) J. Mater. Sci., 49, pp. 4032-4037; Ganapathy, S., Vasileiadis, A., Heringa, J.R., Wagemaker, M., The fine line between a two-phase and solid-solution phase transformation and highly mobile phase interfaces in spinel Li4+ xTi5O12 (2017) Adv. Energy Mater, p. 1601781; Kitta, M., Akita, T., Maeda, Y., Kohyama, M., Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy (2012) Langmuir, 28, pp. 12384-12392; Kitta, M., Akita, T., Tanaka, S., Kohyama, M., Two-phase separation in a lithiated spinel Li4Ti5O12 crystal as confirmed by electron energy-loss spectroscopy (2014) J. Power Sources, 257, pp. 120-125; Borghols, W.J.H., Wagemaker, M., Lafont, U., Kelder, E.M., Mulder, F.M., Size effects in the Li4+xTi5O12 spinel (2009) J. Am. Chem. Soc., 131, pp. 17786-17792; Yoshikawa, D., Kadoma, Y., Kim, J.-M., Ui, K., Kumagai, N., Kitamura, N., Spray-drying synthesized lithium-excess Li4+xTi5−xO12−δ and its electrochemical property as negative electrode material for Li-ion batteries (2010) Electrochim. Acta, 55, pp. 1872-1879; Hao, X., Lin, X., Lu, W., Bartlett, B.M., Oxygen vacancies lead to loss of domain order, particle fracture, and rapid capacity fade in lithium manganospinel (LiMn2O4) batteries (2014) ACS Appl. Mater. Interfaces, 6, pp. 10849-10857 |