Deposition of droplets by pyroelectric field created by lithium tantalate with tailored domain structure / Shur V.Y., Mingaliev E.A., Kosobokov M.S., Makaev A.V., Karpov V.R. // Ferroelectrics. - 2017. - V. 508, l. 1. - P. 58-64.

ISSN:
00150193
Type:
Article
Abstract:
A new concept of pyroelectric electrohydrodynamic system for deposition of the micron size droplets at the predetermined position on the substrate with high accuracy using pyroelectric field created by lithium tantalate with tailored domain structure has been proposed. The optimal geometry of the domain pattern has been obtained by computer simulation of the spatial distribution of surface pressure acting on liquid/vapor interface induced by pyroelectric field. The proposed technique was applied to dispense the silicon oil and the water solution of amino acid glycine. © 2017 Taylor & Francis Group, LLC.
Author keywords:
Droplet deposition; lithium tantalate; pyroelectric field; tailored domain structure
Index keywords:
Amino acids; Drops; Electrohydrodynamics; Lithium; Droplet deposition; Liquid/vapor interfaces; Lithium tantalate; Optimal geometry; Pyroelectric fields; Surface pressures; Tailored domain structures;
DOI:
10.1080/00150193.2017.1287542
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017617970&doi=10.1080%2f00150193.2017.1287542&partnerID=40&md5=0d6fbf0672f20ef66d11ec3476bca9fe
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017617970&doi=10.1080%2f00150193.2017.1287542&partnerID=40&md5=0d6fbf0672f20ef66d11ec3476bca9fe
Affiliations School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federation
Author Keywords Droplet deposition; lithium tantalate; pyroelectric field; tailored domain structure
References Seemann, R., Brinkmann, M., Pfohl, T., Herminghaus, S., Droplet based microfluidics (2012) Rep Prog Phys., 75, p. 16601; Gudapati, H., Dey, M., Ozbolat, I., A comprehensive review on droplet-based bioprinting: Past, present and future (2016) Biomaterials., 102, pp. 20-42; Kim, B.H., Onses, M.S., Lim, J.B., Nam, S., Oh, N., Kim, H., Yu, K.J., Rogers, J.A., High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes (2015) Nano Lett., 15, pp. 969-973; Kang, H.W., Lee, S.J., Ko, I.K., Kengla, C., Yoo, J.J., Atala, A., A 3D bioprinting system to produce human-scale tissue constructs with structural integrity (2016) Nat Biotechnol., 34, pp. 312-319; Onses, M.S., Sutanto, E., Ferreira, P.M., Alleyne, A.G., Rogers, J.A., Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing (2015) Small., 11, pp. 4237-4266; Kuang, M., Wang, L., Song, Y., Controllable printing droplets for high-resolution patterns (2014) Adv Mater., 26, pp. 6950-6958; Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., Woo, E.P., High-resolution inkjet printing of all-polymer transistor circuits (2000) Science., 290, pp. 2123-2126; Goldmann, T., Gonzalez, J.S., DNA-printing: utilization of a standard inkjet printer for the transfer of nucleic acids to solid supports (2000) J Biochem Biophys Methods., 42, pp. 105-110; Park, J.U., Hardy, M., Kang, S.J., Barton, K., Adair, K., Mukhopadhyay, D.K., Lee, C.Y., Rogers, J.A., High-resolution electrohydrodynamic jet printing (2007) Nat Mater., 6, pp. 782-789; Taylor, G., Disintegration of water drops in an electric field (1964) Proc R Soc A Math Phys Eng Sci., 280, pp. 383-397; Jayasinghe, S.N., Edirisinghe, M.J., Electric-field driven jetting from dielectric liquids (2004) Appl Phys Lett., 85, pp. 4243-4245; Ferraro, P., Coppola, S., Grilli, S., Paturzo, M., Vespini, V., Dispensing nano-pico droplets and liquid patterning by pyroelectrodynamic shooting (2010) Nat Nanotechnol., 5, pp. 429-435; Mingaliev, E.A., Zorikhin, D.V., Kosobokov, M.S., Makaev, A.V., Shur, V.Y., Generation of picoliter droplets by pyroelectrodynamic effect (2015) Ferroelectrics., 476, pp. 156-162; Grimaldi, I.A., Coppola, S., Loffredo, F., Villani, F., Nenna, G., Minarini, C., Vespini, V., Ferraro, P., Graded-size microlens array by the pyro-electrohydrodynamic continuous printing method (2013) Appl Opt., 52, pp. 7699-7705; Vespini, V., Coppola, S., Grilli, S., Paturzo, M., Ferraro, P., Milking liquid nano-droplets by an IR laser: a new modality for the visualization of electric field lines (2013) Meas Sci Technol., 24, p. 45203; Grilli, S., Miccio, L., Gennari, O., Coppola, S., Vespini, V., Battista, L., Orlando, P., Ferraro, P., Active accumulation of very diluted biomolecules by nano-dispensing for easy detection below the femtomolar range (2014) Nat Commun., 5, p. 5314; Coppola, S., Vespini, V., Nasti, G., Gennari, O., Grilli, S., Ventre, M., Iannone, M., Ferraro, P., Tethered pyro-electrohydrodynamic spinning for patterning well-ordered structures at micro- and nanoscale (2014) Chem Mater., 26, pp. 3357-3360; Shur, V.Y., Bykov, D.A., Mingaliev, E.A., Tyurnina, A.E., Burban, G.V., Kadushnikov, R.M., Mizgulin, V.V., Coffee ring effect during drying of colloid drop: experiment and computer simulation (2015) Ferroelectrics., 476, pp. 47-53; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Fejer, M.M., Byer, R.L., Recent achievements in domain engineering in lithium niobate and lithium tantalate (2001) Ferroelectrics., 257, pp. 191-202; Shur, V.Y., Akhmatkhanov, A.R., Baturin, I.S., Micro- and nano-domain engineering in lithium niobate (2015) Appl Phys Rev., 2, p. 40604; Gennari, O., Battista, L., Silva, B., Grilli, S., Miccio, L., Vespini, V., Coppola, S., Ferraro, P., Investigation on cone jetting regimes of liquid droplets subjected to pyroelectric fields induced by laser blasts (2015) Appl Phys Lett., 106, p. 054103
Correspondence Address Mingaliev, E.A.; School of Natural Sciences and Mathematics, Ural Federal UniversityRussian Federation; email: ea.mingaliev@urfu.ru
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus