References |
Seemann, R., Brinkmann, M., Pfohl, T., Herminghaus, S., Droplet based microfluidics (2012) Rep Prog Phys., 75, p. 16601; Gudapati, H., Dey, M., Ozbolat, I., A comprehensive review on droplet-based bioprinting: Past, present and future (2016) Biomaterials., 102, pp. 20-42; Kim, B.H., Onses, M.S., Lim, J.B., Nam, S., Oh, N., Kim, H., Yu, K.J., Rogers, J.A., High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes (2015) Nano Lett., 15, pp. 969-973; Kang, H.W., Lee, S.J., Ko, I.K., Kengla, C., Yoo, J.J., Atala, A., A 3D bioprinting system to produce human-scale tissue constructs with structural integrity (2016) Nat Biotechnol., 34, pp. 312-319; Onses, M.S., Sutanto, E., Ferreira, P.M., Alleyne, A.G., Rogers, J.A., Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing (2015) Small., 11, pp. 4237-4266; Kuang, M., Wang, L., Song, Y., Controllable printing droplets for high-resolution patterns (2014) Adv Mater., 26, pp. 6950-6958; Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., Woo, E.P., High-resolution inkjet printing of all-polymer transistor circuits (2000) Science., 290, pp. 2123-2126; Goldmann, T., Gonzalez, J.S., DNA-printing: utilization of a standard inkjet printer for the transfer of nucleic acids to solid supports (2000) J Biochem Biophys Methods., 42, pp. 105-110; Park, J.U., Hardy, M., Kang, S.J., Barton, K., Adair, K., Mukhopadhyay, D.K., Lee, C.Y., Rogers, J.A., High-resolution electrohydrodynamic jet printing (2007) Nat Mater., 6, pp. 782-789; Taylor, G., Disintegration of water drops in an electric field (1964) Proc R Soc A Math Phys Eng Sci., 280, pp. 383-397; Jayasinghe, S.N., Edirisinghe, M.J., Electric-field driven jetting from dielectric liquids (2004) Appl Phys Lett., 85, pp. 4243-4245; Ferraro, P., Coppola, S., Grilli, S., Paturzo, M., Vespini, V., Dispensing nano-pico droplets and liquid patterning by pyroelectrodynamic shooting (2010) Nat Nanotechnol., 5, pp. 429-435; Mingaliev, E.A., Zorikhin, D.V., Kosobokov, M.S., Makaev, A.V., Shur, V.Y., Generation of picoliter droplets by pyroelectrodynamic effect (2015) Ferroelectrics., 476, pp. 156-162; Grimaldi, I.A., Coppola, S., Loffredo, F., Villani, F., Nenna, G., Minarini, C., Vespini, V., Ferraro, P., Graded-size microlens array by the pyro-electrohydrodynamic continuous printing method (2013) Appl Opt., 52, pp. 7699-7705; Vespini, V., Coppola, S., Grilli, S., Paturzo, M., Ferraro, P., Milking liquid nano-droplets by an IR laser: a new modality for the visualization of electric field lines (2013) Meas Sci Technol., 24, p. 45203; Grilli, S., Miccio, L., Gennari, O., Coppola, S., Vespini, V., Battista, L., Orlando, P., Ferraro, P., Active accumulation of very diluted biomolecules by nano-dispensing for easy detection below the femtomolar range (2014) Nat Commun., 5, p. 5314; Coppola, S., Vespini, V., Nasti, G., Gennari, O., Grilli, S., Ventre, M., Iannone, M., Ferraro, P., Tethered pyro-electrohydrodynamic spinning for patterning well-ordered structures at micro- and nanoscale (2014) Chem Mater., 26, pp. 3357-3360; Shur, V.Y., Bykov, D.A., Mingaliev, E.A., Tyurnina, A.E., Burban, G.V., Kadushnikov, R.M., Mizgulin, V.V., Coffee ring effect during drying of colloid drop: experiment and computer simulation (2015) Ferroelectrics., 476, pp. 47-53; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Fejer, M.M., Byer, R.L., Recent achievements in domain engineering in lithium niobate and lithium tantalate (2001) Ferroelectrics., 257, pp. 191-202; Shur, V.Y., Akhmatkhanov, A.R., Baturin, I.S., Micro- and nano-domain engineering in lithium niobate (2015) Appl Phys Rev., 2, p. 40604; Gennari, O., Battista, L., Silva, B., Grilli, S., Miccio, L., Vespini, V., Coppola, S., Ferraro, P., Investigation on cone jetting regimes of liquid droplets subjected to pyroelectric fields induced by laser blasts (2015) Appl Phys Lett., 106, p. 054103 |