Luminescence of VO4 3− centers in LiMgPO4 and LiMgVO4: Effect of [PO4]3−/[VO4]3− substitution on the structure and optical properties / Barykina Y.A., Medvedeva N.I., Zubkov V.G., Kellerman D.G. // Journal of Alloys and Compounds. - 2017. - V. 709, l. . - P. 1-7.

ISSN:
09258388
Type:
Article
Abstract:
The effect of V doping on the structure and optical properties of LiMgPO4 was studied. We found that LiMg(PO4)1−x(VO4)x with x<17% V retains the crystal structure of LiMgPO4 and demonstrates self-activated luminescence. All emission spectra under 320 nm excitation had the form of a broad band with a maximum at 490 nm and the emission intensity increased with the vanadium concentration. The luminescence with a peak at 560 nm was also observed for LiMgVO4. The UV–Vis diffuse reflectance spectra were recorded for LiMgPO4, and LiMgPO4 with 17% V and LiMgVO4, and the optical band gaps were estimated to be 4.05, 3.90 and 3.43 eV, respectively. The ab initio calculations predict an absorption-edge shift to lower energies with growing vanadium concentration and reproduce very well the experimental band gaps for vanadium containing oxides (LiMgP0.75V0.25O4 and LiMgVO4), but provide a much larger value for LiMgPO4. © 2017 Elsevier B.V.
Author keywords:
Ab initio calculations; LiMgPO4; Optical properties
Index keywords:
нет данных
DOI:
10.1016/j.jallcom.2017.03.126
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015411491&doi=10.1016%2fj.jallcom.2017.03.126&partnerID=40&md5=b4c27f2f8010d00ff1a43128dcaa1012
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015411491&doi=10.1016%2fj.jallcom.2017.03.126&partnerID=40&md5=b4c27f2f8010d00ff1a43128dcaa1012
Affiliations Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russian Federation
Author Keywords Ab initio calculations; LiMgPO4; Optical properties
Funding Details 16-13-10111, RSF, Russian Science Foundation; 17-03-00158 -a, RFBR, Russian Foundation for Basic Research
Funding Text This work was financially supported by the Russian Foundation for Basic Research (Grant No. 17-03-00158 -a). The optical measurements were supported by the Russian Science Foundation (Grant No 16-13-10111).
References Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B., Phosphoolivines as positive-electrode materials for rechargeable lithium batteries (1997) J. Electrochem Soc., 144, pp. 1188-1194; Damen, L., Giorgio, F.D., Monaco, S., Veronesi, F., Mastragostino, M., Synthesis and characterization of carbon-coated LiMnPO4 and LiMn1−xFexPO4 (x=0.2, 0.3) materials for lithium-ion batteries (2012) J. Power Sources, 218, pp. 250-253; Kreder, K.J., Manthiram, A., Vanadium-substituted LiCoPO4 core with a monolithic LiFePO4 shell for high-voltage lithium-ion batteries (2017) ACS Energy Lett., pp. 64-69; Lin, Y., Pan, H., Gao, M., Liu, Y., Effects of reductive conditions on the microstructure and electrochemical properties of sol-gel derived LiFePO4/C (2007) J. Electrochem. Soc., 154, pp. A1124-A1128; Neef, C., Meyer, H.-P., Klingeler, R., Morphology-controlled two-step synthesis and electrochemical studies on hierarchically structured LiCoPO4 (2015) Solid State Sci., 48, pp. 270-277; Vaknin, D., Zarestky, J.L., Rivera, J.-P., Schmid, H., Commensurate-incommensurate magnetic phase transition in magnetoelectric single crystal LiNiPO4 (2004) Phys. Rev. Lett., 92, p. 207201; Toft-Petersen, R., Andersen, N.H., Li, H., Li, J., Tian, W., Bud'ko, S.L., Jensen, T.B.S., Vaknin, D., Magnetic phase diagram of magnetoelectric LiMnPO4 (2012) Phys. Rev. B, 85, p. 224415; Van Aken, B.B., Rivera, J.-P., Schmid, H., Fiebig, M., Observation of ferrotoroidic domains (2007) Nature, 449, pp. 702-705; Neef, C., Wadepohl, H., Meyer, H.-P., Klingeler, R., High-pressure optical floating-zone growth of Li(Mn,Fe)PO4 single crystals (2017) J. Cryst. Growth, 462, pp. 50-59; Thomas, D., Abhilash, P., Sebastian, M.T., Casting and characterization of LiMgPO4 glass free LTCC tape for microwave applications (2013) J. Eur. Ceram. Soc., 33, pp. 87-93; Cheng, Z.F., Hu, X., Li, Y., Ling, Z.Y., Fabrication and microwave dielectric properties of Mg2SiO4-LiMgPO4-TiO2 composite ceramics (2016) J. Am. Ceram. Soc., 99, pp. 2688-2692; Dong, Z.W., Zhengn, Y., Cheng, P., Lu, X.P., Zhou, W., Microwave dielectric properties of Li(Mg1−xNix)PO4 ceramics for LTCC applications (2014) Ceram. Int., 40, pp. 12983-12988; Hingwe, V.S., Bajaj, N.S., Omanwar, S.K., Eu3+ doped N-UV emitting LiSrPO4 phosphor for W-LED application, Optik – Int (2017) J. Light Electron. Opt., 130, pp. 149-153; Li, Y., Ma, H., Hua, Y., Yang, Q., Li, C., Deng, D., Xu, S., Tunable luminescence of Ce3+/Li+, Eu2+ co-doped Ca4(PO4)2O phosphor for white light emitting diodes (2016) J. Rare Earths, 34, pp. 7-11; Mishra, S., Swati, G., Rajesh, B., Tyagi, K., Gahtori, B., Sivaiah, B., Vijayan, N., Haranath, D., Luminescence and advanced mass spectroscopic characterization of sodium zinc orthophosphate phosphor for low-cost light-emitting diodes (2016) Lumines, 31, pp. 348-355; Palan, C.B., Koparkar, K.A., Bajaj, S., Soni, A., Omanwar, S.K., Synthesis and TL/OSL properties of a novel high-sensitive blue-emitting LiSrPO4:Eu2+ phosphor for radiation dosimetry (2016) Appl. Phys. A, 122, p. 703; Balakrishna, A., Kumar, V., Kumar, A., Ntwaeaborwa, O.M., Structural and photoluminescence features of Pr3+-activated different alkaline sodium-phosphate-phosphors (2016) J. Alloy. Compd., 686, pp. 533-539; Santos, R.D.S., Rezende, M.V.D.S., Eu doping and reduction into barium orthophosphates (2016) Opt. Mater, 58, pp. 136-141; Amara, M.B., Vlasse, M., Flem, G.L., Hagenmuller, P., Structure of the low-temperature variety of calcium sodium orthophosphate NaCaPO4 (1983) Acta Crystallogr. C, 39, pp. 1483-14855; Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides (1976) Acta Crystallogr., A32, pp. 751-767; Elouadi, B., Elammari, L., Crystal structures and ferroelectric properties of AIBIIPO4 (AI = monovalent cation and BII = divalent cation) (1990) Ferroelectrics, 107, pp. 253-258; Hanic, F., Handlović, M., Burdova, K., Majling, J., Crystal structure of lithium magnesium phosphate, LiMgPO4: crystal chemistry of the olivine-type compounds (1982) J. Crystallogr. Spectrosc. Res., 12, pp. 99-127; Baran, A., Mahlik, S., Grinberg, M., Cai, P., Kim, S.I., Seo, H.J., Luminescence properties of different Eu sites in LiMgPO4:Eu2+, Eu3+ (2014) J. Phys. Condens. Matter, 26, p. 385401; Long, Q., Xia, Y., Huang, Y., Liao, S., Gao, Y., Huang, J., Liang, J., Cai, J., Na+ induced electric-dipole dominated transition(5D0-7F2) of Eu3+ emission in AMgPO4:Eu3+ (A=Li+, Na+, K+) phosphors (2015) Mater. Lett., 145, pp. 359-362; Baran, A., Mahlik, S., Grinberg, M., Barzowska, J., Szczodrowski, K., Kim, S.I., Seo, H.J., Charge transfer and europium trapped exciton states in Eu3+/Eu2++Doped Phosphors International Conference on Oxide Materials for Electronic Engineering OMEE-2014, pp. 121-122; Seo, H.J., Eu2+-luminescence in alkali metal magnesium monophosphates (2013) J. Cer. Proc. Res., 14, pp. s22-s25; Zhang, S., Huang, Y., Seo, H.J., The spectroscopic properties and structural occupation of Eu3+ sites in LiMgPO4 phosphor (2010) J. Electrochem. Soc., 157, pp. J186-J190; Enciso- Maldonado, L., Dyer, M.S., Jones, M.D., Li, M., Payne, J.L., Pitcher, M.J., Omir, M.K., Rosseinsky, M.J., Computational identification and experimental realization of lithium vacancy introduction into the olivine LiMgPO4 (2015) Chem. Mater, 27, pp. 2074-2091; Qiao, X., Seo, H.J., Synthesis and luminescence properties of LiMg1−xMnxPO4 solid solutions (2013) J. Cer. Proc. Res., 14, pp. s30-s34; Shi, M., Zhang, D., Chang, C., Tunable emission and concentration quenching of Tb3+ in magnesium phosphate lithium (2015) J. Alloy. Compd., 627, pp. 25-30; Kulig (Wróbel), D., Gieszczyk, W., Bilski, P., Marczewska, B., Kłosowski, M., New OSL detectors based on LiMgPO4 crystals grown by micro pulling down method. Dosimetric properties vs. growth parameters (2016) Radiat. Meas., 90, pp. 303-307; Palan, C.B., Bajaj, N.S., Koparkar, K.A., Soni, A., Omanwar, S.K., TL/OSL properties of green emitting LiMgPO4:Tb3+, B (LMPTB) phosphor for radiation dosimetry (2016) J. Inor. Organomet. Polym. Mater. B, 26, pp. 845-854; Kulig (Wróbel), D., Gieszczyk, W., Bilski, P., Marczewska, B., Kłosowski, M., Thermoluminescence and optically stimulated luminescence studies on LiMgPO4 crystallized by micro pulling down technique (2016) Radiat. Meas., 85, pp. 88-92; Kumar, M., Dhabekar, B., Menon, S.N., Bakshi, A.K., Udhayakumar, J., Beta response of LiMgPO4:Tb, B based OSL discs for personnel monitoring applications (2013) Radiat. Prot. Dosim., 155, pp. 410-417; Gai, M.-Q., Chen, Z.-Y., Fan, Y.-W., Yan, S.-Y., Xie, Y.-X., Wang, J.-H., Zhang, Y.G., Synthesis of LiMgPO4:Eu, Sm, B phosphors and investigation of their optically stimulated luminescence properties (2015) Radiat. Meas., 78, pp. 48-52; Bajaj, N.S., Palan, C.B., Koparkar, K.A., Kulkarni, M.S., Omanwar, S.K., Preliminary results on effect of boron co-doping on CW-OSL and TL properties of LiMgPO4: Tb, B (2016) J. Lumin., 175, pp. 9-15; Kellerman, D.G., Chukalkin, Y.G., Mukhina, N.A., Gorshkov, V.S., Semenova, A.S., Teplykh, A.E., Neutron diffraction and DC-magnetization studies (2012) J. Magn. Magn. Mater, 324, pp. 3181-3188; Clemens, O., Bauer, M., Haberkorn, R., Springborg, M., Beck, H.P., Synthesis and characterization of vanadium-doped LiMgPO4-Compounds: LiMn(PO4)x(VO4)1−x (0.8 ≤ x ≤ 1.0) (2012) Chem. Mater, 24, pp. 4717-4724; Deng, T., Xia, Z., Ding, H., Chemical Effect of [PO4]3−/[VO4]3−substitution on the structure and luminescence properties of Ca5[(P,V)O4]3F: Eu3+phosphors (2015) Phys. Lett., 637, pp. 67-70; Nakajima, T., Isobe, M., Tsuchiya, T., Ueda, Y., Manabe, T., Correlation between luminescence quantum efficiency and structural properties of vanadate phosphors with chained, dimerized, and isolated VO4 tetrahedra (2010) J. Phys. Chem., 114 C, pp. 5160-5167; Bharat, L.K., Krishna, K.G., Yu, J.S., Effect of transition metal ion (Nb5+) doping on the luminescence properties of self-activated Ca2AgZn2V3O12 phosphors (2017) J. Alloy. Compd., 699, pp. 756-762; Getz, M., Hansen, P.-A., Ahmed, M.A.K., Fjellvåg, H., Nilsen, O., Luminescent YbVO4 by atomic layer deposition (2017) Dalton Trans., 177; Ronde, H., Blasse, G., The nature of the electronic transitions of the vanadate group (1978) J. Inorg. Nucl. Chem., 40, pp. 215-219; Jain, A., Kumar, A., Dhoble, S.J., Peshwe, D.R., Persistent luminescence: an insight (2016) Renew. Sustain. Energy Rev., 65, pp. 135-153; Kumar, E.S., Bellarmine, F., Ramanjaneyulu, M., Deepthi, D., Rao, M.S.R., Tunable optical properties of multiphase ZnO–V2O5 polycrystalline powders (2015) Scr. Mater., 108, pp. 48-51; Kresse, G., Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method (1999) Phys. Rev. B, 59, pp. 1758-1775; Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set (1996) Phys. Rev. B, 54, pp. 11169-11186; Perdew, J.P., Burke, S., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868; Monkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys. Rev. B, 13, pp. 5188-5192; Corsmit, A.F., Blasse, G., Order—disorder in compounds LiMe2+VO4 (1973) Chem. Phys. Lett., 201, pp. 347-349; Paques-Ledent, M.T., Non-oliwne structure of LiMgVO4: evidence from X-ray diffractometry and vibrational spectroscopy (1974) Chem. Phys. Lett., 24, pp. 231-233; Blasse, G., The luminescence of closed-shell transition-metal complexes. New developments (2006) Luminescence and Energy Transfer, pp. 1-41. , Springer-Verlag Berlin; Whited, R.C., Walker, W.C., Exciton spectra of CaO and MgO (1969) Phys. Rev. Lett., 22, pp. 1428-1429; Makino, T., Segawa, Y., Kawasaki, M., Ohtomo, A., Shiroki, R., Tamura, K., Yasuda, T., Koinuma, H., Band gap engineering based on MgxZn1−xO and CdyZn1−yO ternary alloy films (2001) Appl. Phys. Lett., 78, pp. 1237-1239; Kubelka, P., Munk, F., Ein Beitrag zur Optik der Farbanstriche (1931) Z.Tech. Phys. Leipz., 12, pp. 593-601; Tauc, J., Grigorovici, R., Vancu, A., Optical properties and electronic structure of amorphous germanium (1966) Phys. Status Solidi, 15, pp. 627-637; Richter, N., Charged Point Defects in Oxides–a Case Study of MgO Bulk and Surface F Centers (2013), (PhD thesis) Technische Universität Berlin; Rinke, P., Schleife, A., Kioupakis, E., Janotti, A., Rödl, C., Bechstedt, F., Scheffler, M., van de Walle, C.G., First-Principles Optical Spectra for F Centers in MgO (2012) Phys. Rev. Lett., 108, p. 126404
Correspondence Address Kellerman, D.G.; Institute of Solid State Chemistry, 91, Pervomaiskaya st., Russian Federation; email: kellerman@ihim.uran.ru
Publisher Elsevier Ltd
CODEN JALCE
Language of Original Document English
Abbreviated Source Title J Alloys Compd
Source Scopus