Zebrafish models in neuropsychopharmacology and CNS drug discovery / Khan K.M., Collier A.D., Meshalkina D.A., Kysil E.V., Khatsko S.L., Kolesnikova T., Morzherin Y.Y., Warnick J.E., Kalueff A.V., Echevarria D.J. // British Journal of Pharmacology. - 2017. - V. 174, l. 13. - P. 1925-1944.

ISSN:
00071188
Type:
Review
Abstract:
Despite the high prevalence of neuropsychiatric disorders, their aetiology and molecular mechanisms remain poorly understood. The zebrafish (Danio rerio) is increasingly utilized as a powerful animal model in neuropharmacology research and in vivo drug screening. Collectively, this makes zebrafish a useful tool for drug discovery and the identification of disordered molecular pathways. Here, we discuss zebrafish models of selected human neuropsychiatric disorders and drug-induced phenotypes. As well as covering a broad range of brain disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent developments in zebrafish genetics and small molecule screening, which markedly enhance the disease modelling and the discovery of novel drug targets. © 2017 The British Pharmacological Society
Author keywords:
Index keywords:
нет данных
DOI:
10.1111/bph.13754
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017091455&doi=10.1111%2fbph.13754&partnerID=40&md5=41c25c4b79901e341fdd8c9ec97dac19
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85017091455&doi=10.1111%2fbph.13754&partnerID=40&md5=41c25c4b79901e341fdd8c9ec97dac19
Affiliations Department of Psychology, University of Southern Mississippi, Hattiesburg, MS, United States; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, United States; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russian Federation; Ural Federal University, Ekaterinburg, Russian Federation; Department of Behavioral Sciences, Arkansas Tech University, Russellville, AR, United States; Research Institute of Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
Funding Details 16-04-00851, RFBR, Russian Foundation for Basic Research
Funding Text The study was coordinated through the International Zebrafish Neuroscience Research Consortium (ZNRC), and this collaboration was funded by St. Petersburg State University, Ural Federal University and Guangdong Ocean University. A.V.K. is the Chair of ZNRC, and his research is supported by the Russian Foundation for Basic Research (RFBR) grant 16-04-00851.
References Abreu, M.S., Giacomini, A.C., Kalueff, A.V., Barcellos, L.J., The smell of “anxiety”: behavioral modulation by experimental anosmia in zebrafish (2016) Physiol Behav, 157, pp. 67-71; Ahmed, T., Gilani, A.-H., Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer's disease (2009) Pharmacol Biochem Behav, 91, pp. 554-559; Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M., Keller, P.J., Whole-brain functional imaging at cellular resolution using light-sheet microscopy (2013) Nat Methods, 10, pp. 413-420; Akhisaroglu, M., Kurtuncu, M., Manev, H., Uz, T., Diurnal rhythms in quinpirole-induced locomotor behaviors and striatal D2/D3 receptor levels in mice (2005) Pharmacol Biochem Behav, 80, pp. 371-377; Akindipe, T., Wilson, D., Stein, D.J., Psychiatric disorders in individuals with methamphetamine dependence: prevalence and risk factors (2014) Metab Brain Dis, 29, pp. 351-357; Alexander, S.P.H., Kelly, E., Marrion, N., Peters, J.A., Benson, H.E., Faccenda, E., The Concise Guide to PHARMACOLOGY 2015/16: Overview (2015) Br J Pharmacol, 172, pp. 5729-5743; Alexander, S.P.H., Cidlowski, J.A., Kelly, E., Marrion, N., Peters, J.A., Benson, H.E., The Concise Guide to PHARMACOLOGY 2015/16: Nuclear hormone receptors (2015) Br J Pharmacol, 172, pp. 5956-5978; Alexander, S.P.H., Kelly, E., Marrion, N., Peters, J.A., Benson, H.E., Faccenda, E., The Concise Guide to PHARMACOLOGY 2015/16: Transporters (2015) Br J Pharmacol, 172, pp. 6110-6202; Alexander, S.P.H., Fabbro, D., Kelly, E., Marrion, N., Peters, J.A., Benson, H.E., The concise guide to PHARMACOLOGY 2015/16: Enzymes (2015) Br J Pharmacol, 172, pp. 6024-6109; Alfaro, J.M., Ripoll-Gómez, J., Burgos, J.S., Kainate administered to adult zebrafish causes seizures similar to those in rodent models (2011) Eur J Neurosci, 33, pp. 1252-1255; Alsop, D., Vijayan, M., The zebrafish stress axis: molecular fallout from the teleost-specific genome duplication event (2009) Gen Comp Endocrinol, 161, pp. 62-66; Alsop, D., Vijayan, M.M., Development of the corticosteroid stress axis and receptor expression in zebrafish (2008) Am J Physiol Regul Integr Comp Physiol, 294, pp. R711-R719; (2013) Diagnostic and Statistical Manual of Mental Disorders: DSM, , 5.ed, edn., Association A.P, Washington, D; Amores, A., Catchen, J., Ferrara, A., Fontenot, Q., Postlethwait, J.H., Genome evolution and meiotic maps by massively parallel dna sequencing: spotted gar, an outgroup for the teleost genome duplication (2011) Genetics, 188, pp. 799-808; Amsterdam, A., Hopkins, S., Mutagenesis strategies in zebrafish for identifying genes involved in development and disease (2006) Trends Genet, 22, pp. 473-478; Andrea Galimberti, C., Magri, F., Copello, F., Arbasino, C., Cravello, L., Casu, M., Seizure frequency and cortisol and dehydroepiandrosterone sulfate (DHEAS) levels in women with epilepsy receiving antiepileptic drug treatment (2005) Epilepsia, 46, pp. 517-523; (2016) Website, , ADAA.org, [Online] Available from, (accessed 12/19/2016); Armstrong, G.A.B., Liao, M., You, Z., Lissouba, A., Chen, B.E., Drapeau, P., Homology directed knockin of point mutations in the zebrafish tardbp and fus genes in ALS using the CRISPR/Cas9 system (2016) PLoS One, 11; Arrenberg, A.B., Del Bene, F., Baier, H., Optical control of zebrafish behavior with halorhodopsin (2009) Proc Natl Acad Sci, 106, pp. 17968-17973; Ashburn, T.T., Thor, K.B., Drug repositioning: identifying and developing new uses for existing drugs (2004) Nat Rev Drug Discov, 3, pp. 673-683; Babaei, F., Hong, T.L.C., Yeung, K., Cheng, S.H., Lam, Y.W., Contrast-enhanced X-ray micro-computed tomography as a versatile method for anatomical studies of adult zebrafish (2016) Zebrafish, 13, pp. 310-316; Babin, P.J., Thisse, C., Durliat, M., Andre, M., Akimenko, M.-A., Thisse, B., Both apolipoprotein E and A-I genes are present in a nonmammalian vertebrate and are highly expressed during embryonic development (1997) Proc Natl Acad Sci, 94, pp. 8622-8627; Baraban, S.C., Dinday, M.T., Hortopan, G.A., Drug screening in Scn1a mutant zebrafish identifies clemzole as a potential Dravet syndrome treatment (2013) Nat Commun, 4, p. 2410; Baraban, S.C., Taylor, M.R., Castro, P.A., Baier, H., Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression (2005) Neuroscience, 131, pp. 759-768; Barr, A.M., Markou, A., Psychostimulant withdrawal as an inducing condition in animal models of depression (2005) Neurosci Biobehav Rev, 29, pp. 675-706; Barros, T.P., Alderton, W.K., Reynolds, H.M., Roach, A.G., Berghmans, S., Zebrafish: an emerging technology for in vivo pharmacological assessment to identify potential safety liabilities in early drug discovery (2008) Br J Pharmacol, 154, pp. 1400-1413; Baxendale, S., Holdsworth, C.J., Santoscoy, P.L.M., Harrison, M.R.M., Fox, J., Parkin, A., Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures (2012) Dis Model Mech, 5, pp. 773-784; Belanoff, J.K., Gross, K., Yager, A., Schatzberg, A.F., Corticosteroids and cognition (2001) J Psychiatr Res, 35, pp. 127-145; Bell, E., Klimova, T.A., Eisenbart, J., Moraes, C.T., Murphy, M.P., Buinger, G.R.S., The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production (2007) J Cell Biol, 177, pp. 1029-1036; Bencan, Z., Sledge, D., Levin, E.D., Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety (2009) Pharmacol Biochem Behav, 94, pp. 75-80; Berk, M., Malhi, G.S., Gray, L.J., Dean, O.M., The promise of N-acetylcysteine in neuropsychiatry (2013) Trends Pharmacol Sci, 34, pp. 167-177; Blaker-Lee, A., Gupta, S., McCammon, J.M., De Rienzo, G., Sive, H.L., Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes (2012) Dis Model Mech, 5, pp. 834-851; Blaser, R., Vira, D., Experiments on learning in zebrafish (Danio rerio): a promising model of neurocognitive function (2014) Neurosci Biobehav Rev, 42, pp. 224-231; Braff, D.L., Geyer, M.A., Swerdlow, N.R., Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies (2001) Psychopharmacology (Berl), 156, pp. 234-258; Brennan, C.H., Zebrafish behavioural assays of translational relevance for the study of psychiatric disease (2011) Rev Neurosci, 22, pp. 37-48; Brown, C., Schulberg, H.C., Madonia, M.J., Shear, M.K., Houck, P.R., Treatment outcomes for primary care patients with major depression and lifetime anxiety disorders (1996) Am J Psychiatry, 153, pp. 1293-1300; Bruni, G., Rennekamp, A.J., Velenich, A., McCarroll, M., Gendelev, L., Fertsch, E., Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds (2016) Nat Chem Biol, 12, pp. 559-566; Buffalari, D.M., See, R.E., Amygdala mechanisms of Pavlovian psychostimulant conditioning and relapse (2010) Behavioral Neuroscience of Drug Addiction, pp. 73-99. , In, Springer, Berli; Burgess, H.A., Granato, M., Sensorimotor gating in larval zebrafish (2007) J Neurosci, 27, pp. 4984-4994; Bystritsky, A., Treatment-resistant anxiety disorders (2006) Mol Psychiatry, 11, pp. 805-814; Cachat, J.M., Canavello, P.R., Elegante, M.F., Bartels, B.K., Hart, P.C., Bergner, C.L., Modeling withdrawal syndrome in zebrafish (2011) Behav Brain Res, 208, pp. 371-376; Cachat, J.M., Stewart, A., Utterback, E., Hart, P., Gaikwad, S., Wong, K., Three-dimensional neurophenotyping of adult zebrafish behavior (2011) PLoS One, 6; Campbell, W.A., Yang, H., Zetterberg, H., Baulac, S., Sears, J.A., Liu, T., Zebrafish lacking Alzheimer presenilin enhancer 2 (Pen-2) demonstrate excessive p53-dependent apoptosis and neuronal loss (2006) J Neurochem, 96, pp. 1423-1440; Canavello, P.R., Cachat, J.M., Beeson, E.C., Laffoon, A.L., Grimes, C., Haymore, W.A., Measuring endocrine (cortisol) responses of zebrafish to stress (2011) Zebrafish neurobehavioral protocols, pp. 135-142. , In, Humana Press, Totowa, N; Carvill, G.L., Weckhuysen, S., McMahon, J.M., Hartmann, C., Moller, R.S., Hjalgrim, H., GABRA1 and STXBP1: novel genetic causes of Dravet syndrome (2014) Neurology, 82, pp. 1245-1253; Caspi, A., Moffitt, T.E., Gene–environment interactions in psychiatry: joining forces with neuroscience (2006) Nat Rev Neurosci, 7, pp. 583-590; Cheng, Y.-C., Scotting, P.J., Hsu, L.-S., Lin, S.-J., Shih, H.-Y., Hsieh, F.-Y., Zebrafish rgs4 is essential for motility and axonogenesis mediated by Akt signaling (2013) Cell Mol Life Sci, 70, pp. 935-950; Ciura, S., Lattante, S., Le Ber, I., Latouche, M., Tostivint, H., Brice, A., Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis (2013) Ann Neurol, 74, pp. 180-187; Cognato, G.P., Bortolotto, J.W., Blazina, A.R., Christoff, R.R., Lara, D.R., Vianna, M.R., Y-Maze memory task in zebrafish (Danio rerio): the role of glutamatergic and cholinergic systems on the acquisition and consolidation periods (2012) Neurobiol Learn Mem, 98, pp. 321-328; Collier, A.D., Echevarria, D.J., The utility of the zebrafish model in conditioned place preference to assess the rewarding effects of drugs (2013) Behav Pharmacol, 24, pp. 375-383; Collier, A.D., Khan, K.M., Caramillo, E.M., Mohn, R.S., Echevarria, D.J., Zebrafish and conditioned place preference: a translational model of drug reward (2014) Prog Neuropsychopharmacol Biol Psychiatry, 55, pp. 16-25; Colwill, R.M., Raymond, J., Ferreira, L., Escudero, H., Visual discrimination learning in zebrafish (Danio rerio) (2005) Behav Processes, 70, pp. 19-31; Conklin, E.E., Lee, K.L., Schlabach, S.A., Woods, I.G., VideoHacking: automated tracking and quantification of locomotor behavior with open source software and off-the-shelf video equipment (2015) J Undergraduate Neurosci Educ, 13, pp. A120-A125; Cortese, B.M., Phan, K.L., The role of glutamate in anxiety and related disorders (2005) CNS Spectr, 10, pp. 820-830; Cryan, J.F., Holmes, A., The ascent of mouse: advances in modelling human depression and anxiety (2005) Nat Rev Drug Discov, 4, pp. 775-790; Cunliffe, V.T., Building a zebrafish toolkit for investigating the pathobiology of epilepsy and identifying new treatments for epileptic seizures (2015) J Neurosci Methods, 260, pp. 91-95; Cunliffe, V.T., Building a zebrafish toolkit for investigating the pathobiology of epilepsy and identifying new treatments for epileptic seizures (2016) J Neurosci Methods, 260, pp. 91-95; Cunliffe, V.T., Baines, R.A., Giachello, C.N.G., Lin, W.-H., Morgan, A., Reuber, M., Epilepsy research methods update: understanding the causes of epileptic seizures and identifying new treatments using non-mammalian model organisms (2015) Seizure, 24, pp. 44-51; Cutler, C., Multani, P., Robbins, D., Kim, H.T., Le, T., Hoggatt, J., Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation (2013) Blood, 122, pp. 3074-3081; Danilova, N.P., Krupnik, V.E., Sugden, D., Zhdanova, I., Melatonin stimulates cell proliferation in zebrafish embryo and accelerates its development (2004) FASEB J, 18, pp. 751-753; Darland, T., Dowling, J.E., Behavioral screening for cocaine sensitivity in mutagenized zebrafish (2001) Proc Natl Acad Sci, 98, pp. 11691-11696; De Campos, E.G., Bruni, A.T., De Martinis, B.S., Ketamine induces anxiolytic effects in adult zebrafish: a multivariate statistics approach (2015) Behav Brain Res, 292, pp. 537-546; de Rienzo, G., Gutzman, J.H., Sive, H.L., Efficient shRNA-mediated inhibition of gene expression in zebrafish (2012) Zebrafish, 9, pp. 97-107; Dean, O.M., Giorlando, F., Berk, M., N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action (2011) J Psychiatry Neurosci, 36, pp. 78-86; Desmond, D., Kyzar, E., Gaikwad, S., Green, J., Riehl, R., Roth, A., Assessing epilepsy-related behavioral phenotypes in adult zebrafish (2012) Zebrafish Protocols for Neurobehavioral Research, pp. 313-322. , In, Humana Press, New Yor; Deussing, J.M., Animal models of depression (2006) Drug Discov Today Dis Model, 3, pp. 375-383; Douglass, A.D., Kraves, S., Deisseroth, K., Schier, A.F., Engert, F., Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons (2008) Curr Biol, 18, pp. 1133-1137; Ek, F., Malo, M., Åberg Andersson, M., Wedding, C., Kronborg, J., Svensson, P., Behavioral analysis of dopaminergic activation in zebrafish and rats reveals similar phenotypes (2016) ACS Chem Nerosci, 7, pp. 633-646; Engel, J., (2013) Seizures and epilepsy, 83. , Oxford University Press, New Yor; Félix, A.S., Faustino, A.I., Cabral, E.M., Oliveira, R.F., Noninvasive measurement of steroid hormones in zebrafish holding-water (2013) Zebrafish, 10, pp. 110-115; Fetcho, J., O'Malley, D.M., Visualization of active neural circuitry in the spinal cord of intact zebrafish (1995) J Neurophysiol, 73, pp. 399-406; Fibiger, H.C., Cholinergic mechanisms in learning, memory and dementia: a review of recent evidence (1991) Trends Neurosci, 14, pp. 220-223; Fonseka, T.M., Wen, X.Y., Foster, J.A., Kennedy, S.H., Zebrafish models of major depressive disorders (2016) J Neurosci Res, 94, pp. 3-14; Friedrich, R.W., Jacobson, G.A., Zhu, P., Circuit neuroscience in zebrafish (2010) Curr Biol, 20, pp. R371-R381; Froyset, A.K., Khan, E.A., Fladmark, K.E., Quantitative proteomics analysis of zebrafish exposed to sub-lethal dosages of β-methyl-amino-L-alanine (BMAA) (2016) Sci Rep, pp. 1-6; Fulcher, N., Tran, S., Shams, S., Chatterjee, D., Gerlai, R., Neurochemical and behavioral responses to unpredictable chronic mild stress following developmental isolation: the zebrafish as a model for major depression (2017) Zebrafish, 14, pp. 23-34; Fumagalli, F., Molteni, R., Racagni, G., Riva, M.A., Stress during development: impact on neuroplasticity and relevance to psychopathology (2007) Prog Neurobiol, 81, pp. 197-217; Furmark, T., Tillfors, M., Garpenstrand, H., Marteinsdottir, I., Långström, B., Oreland, L., Serotonin transporter polymorphism related to amygdala excitability and symptom severity in patients with social phobia (2004) Neurosci Lett, 362, pp. 189-192; Galecki, P., Talarowska, M., Bobińska, K., Szemraj, J., COX-2 gene expression is correlated with cognitive function in recurrent depressive disorder (2014) Psychiatry Res, 215, pp. 488-490; Garakani, A., Mathew, S., Charney, D.S., Neurobiology of anxiety disorders and implications for treatment (2006) Mt Sinai J Med, 73, pp. 941-949; Gerlai, R., Antipredatory behavior of zebrafish: adaptive function and a tool for translational research (2013) Evol Psychol, 11, pp. 591-605; Gerlai, R., Social behavior of zebrafish: from synthetic images to biological mechanisms of shoaling (2014) J Neurosci Methods, 234, pp. 59-65; Gerlai, R., Learning and memory in zebrafish (Danio rerio) (2016) Methods Cell Biol, 134, pp. 551-586; Gerlai, R., Lahav, M., Guo, S., Rosenthal, A., Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects (2000) Pharmacol Biochem Behav, 67, pp. 773-782; Gerlai, R., Lee, V., Blaser, R.E., Effects of acute and chronic ethanol exposure on the behavior of adult zebrafish (Danio rerio) (2006) Pharmacol Biochem Behav, 85, pp. 752-761; Geyer, M.A., Krebs-Thomson, K., Braff, D.L., Swerdlow, N.R., Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review (2001) Psychopharmacology (Berl), 156, pp. 117-154; Giacomini, N.J., Rose, B., Kobayashi, K., Guo, S., Antipsychotics produce locomotor impairment in larval zebrafish (2006) Neurotoxicol Teratol, 28, pp. 245-250; Goessling, W., Allen, R.S., Guan, X., Jin, P., Uchida, N., Dovey, N., Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models (2011) Cell Stem Cell, 8, pp. 445-458; Goldshmit, Y., Sztal, T.E., Jusuf, P.R., Hall, T.E., Nguyen-Chi, M., Currie, P.D., Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish (2012) J Neurosci, 32, pp. 7477-7492; Green, J., Collins, C., Kyzar, E.J., Pham, M., Roth, A., Gaikwad, S., Automated high-throughput neurophenotyping of zebrafish social behavior (2012) J Neurosci Methods, 210, pp. 266-271; Griebel, G., Holmes, A., 50 years of hurdles and hope in anxiolytic drug discovery (2013) Nat Rev Drug Discov, 12, pp. 667-687; Griffiths, B.B., Schoonheim, P.J., Ziv, L., Voelker, L., Baier, H., Gahtan, E., A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response (2012) Front Behav Neurosci, 6, pp. 1-10; Griffiths, B.B., Schoonheim, P.J., Ziv, L., Voelker, L., Baier, H., Gahtan, E., A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response (2012) Front Behav Neurosci, 6, p. 68; Grone, B.P., Baraban, S.C., Animal models in epilepsy research: legacies and new directions (2015) Nat Neurosci, 18, pp. 339-343; Grone, B.P., Marchese, M., Hamling, K.R., Kumar, M.G., Krasniak, C.S., Sicca, F., Epilepsy, behavioral abnormalities, and physiological comorbidities in syntaxin-binding protein 1 (STXBP1) mutant zebrafish (2016) PLoS One, 11; Gupta, Assessment of locomotion behavior in adult zebrafish after acute exposure to different pharmacological reference compounds (2014) Drug Development and Therapeutics, pp. 127-133; Haesemeyer, M., Schier, A.F., The study of psychiatric disease genes and drugs in zebrafish (2015) Curr Opin Neurobiol, 30, pp. 122-130; Havsteen, B.H., The biochemistry and medical significance of the flavonoids (2002) Pharmacol Ther, 96, pp. 67-202; Hek, K., Direk, N., Newson, R.S., Hofman, A., Hoogendijk, W.J., Mulder, C.L., Anxiety disorders and salivary cortisol levels in older adults: a population-based study (2013) Psychoneuroendocrinology, 38, pp. 300-305; Herbert, J., Cortisol and depression: three questions for psychiatry (2013) Psychol Med, 43, pp. 449-469; Hikida, T., Kitabatake, Y., Pastan, I., Nakanishi, S., Acetylcholine enhancement in the nucleus accumbens prevents addictive behaviors of cocaine and morphine (2003) Proc Natl Acad Sci, 100, pp. 6169-6173; Holsboer, F., Stress, hypercortisolism and corticosteroid receptors in depression: implicatons for therapy (2001) J Affect Disord, 62, pp. 77-91; Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., The zebrafish reference genome sequence and its relationship to the human genome (2013) Nature, 496, pp. 498-503; Howell, K.R., Kutiyanawalla, A., Pillai, A., Long-term continuous corticosterone treatment decreases VEGF receptor-2 expression in frontal cortex (2011) PLoS One, 6; Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Efficient genome editing in zebrafish using a CRISPR-Cas system (2013) Nat Biotechnol, 31, pp. 227-229; Idalencio, R., Kalichak, F., Rosa, J.G.S., de Oliveira, T.A., Koakoski, G., Gusso, D., Waterborne risperidone decreases stress response in zebrafish (2015) PLoS One, 10; Insel, T.R., Voon, V., Nye, J.S., Brown, V.J., Altevogt, B.M., Bullmore, E.T., Innovative solutions to novel drug development in mental health (2011) Neurosci Biobehav Rev, 37; Irons, T., Kelly, P., Hunter, D., Macphail, R., Padilla, S., Acute administration of dopaminergic drugs has differential effects on locomotion in larval zebrafish (2013) Pharmacol Biochem Behav, 103, pp. 792-813; Jesuthasan, S., Fear, anxiety, and control in the zebrafish (2012) Dev Neurobiol, 72, pp. 395-403; Jones, L.J., Norton, W., Using zebrafish to uncover the genetic and neural basis of aggression, a frequent comorbid symptom of psychiatric disorders (2015) Behav Brain Res, 276, pp. 171-180; Kalueff, A.V., Echevarria, D.J., Stewart, A.M., Gaining translational momentum: more zebrafish models for neuroscience research (2014) Prog Neuropsychopharmacol Biol Psychiatry, 55, pp. 1-6; Kalueff, A.V., Gebhardt, M., Stewart, A.M., Cachat, J.M., Brimmer, M., Chawla, J.S., Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond (2013) Zebrafish, 10, pp. 70-86; Kalueff, A.V., Stewart, A.M., Gerlai, R., Zebrafish as an emerging model for studying complex brain disorders (2014) Trends Pharmacol Sci, 35, pp. 63-75; Kane, J., Honigfeld, G., Singer, J., Meltzer, H., Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine (1988) Arch Gen Psychiatry, 45, pp. 789-796; Kasher, P.R., Namavar, Y., van Tjin, P., Fluiter, K., Sizarov, A., Kamermans, M., Impairment of the tRNA-splicing endonuclease subunit 54 (tsen54) gene causes neurological abnormalities and larval death in zebrafish models of pontocerebellar hypoplasia (2011) Hum Mol Genet, 20, pp. 1574-1580; Kaslin, J., Panula, P., Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio) (2001) J Comp Neurol, 440, pp. 342-377; Keedwell, P.A., Poon, L., Papadopoulos, A.S., Marshall, E., Checkley, S.A., Salivary cortisol measurements during a medically assisted alcohol withdrawal (2001) Addict Biol, 6, pp. 247-257; Keifer, J., Summers, C.H., Putting the “Biology” back into “Neurobiology”: the strength of diversity in animal model systems for neuroscience research (2016) Front Syst Neurosci, 10, p. 69; Kendler, K.S., Aggen, S.H., Neale, M.C., Evidence for multiple genetic factors underlying DSM-IV criteria for major depression (2013) JAMA Psychiat, 70, pp. 599-607; Kessler, R.C., The global burden of anxiety and mood disorders: putting ESEMeD findings into perspective (2007) J Clin Psychiatry, 68, pp. 10-19; Kessler, R.C., Chiu, W.T., Demler, O., Merikangas, K.R., Walters, E.E., Prevalence severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication (2005) Arch Gen Psychiatry, 62, pp. 617-627; Kiernan, M.C., Vucic, S., Cheah, B.C., Turner, M.R., Eisen, A., Hardimn, O., Amyotrophic lateral sclerosis (2011) Lancet, 377, pp. 942-955; Kily, L.J., Cowe, Y.C.M., Hussain, O., Patel, S., McElwaine, S., Cotter, F.E., Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways (2008) J Exp Biol, 211, pp. 1623-1634; Kim, Y.-H., Lee, Y., Kim, D., Jung, M.W., Lee, C.-J., Scopolamine-induced learning impairment reversed by physostigmine in zebrafish (2010) Neurosci Res, 67, pp. 156-161; Knafo, S., Wyart, C., Optogenetic neuromodulation: new tools for monitoring and breaking neural circuits (2015) Ann Phys Rehabil Med, 58, pp. 259-264; Kok, F.O., Shin, M., Ni, C.-W., Gupta, A., Grosse, A.S., van Impel, A., Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish (2015) Dev Cell, 31, pp. 97-108; Kokel, D., Bryan, J., Laggner, C., White, R., Cheung, C.Y.J., Mateus, R., Rapid behavior-based identification of neuroactive small molecules in the zebrafish (2010) Nat Chem Biol, 6, pp. 231-237; Koob, G.F., Drugs of abuse: anatomy, pharmacology and function of reward pathways (1992) Trends Pharmacol Sci, 13, pp. 177-184; Korte, S., Corticosteroids in relation to fear, anxiety and psychopathology (2001) Neurosci Biobehav Rev, 25, pp. 117-142; Krishnan, V., Nestler, E.J., Animal models of depression: molecular perspectives (2011) Curr Top Behav Neurosci, 7, pp. 121-147; Kubo, F., Hablitzel, B., Dal Maschio, M., Driever, W., Baier, H., Arrenberg, A.B., Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish (2014) Neuron, 81, pp. 1344-1359; Kumari, V., Soni, W., Sharma, T., Normalization of information processing deficits in schizophrenia with clozapine (1999) Am J Psychiatry, 156, pp. 1046-1051; Kyzar, E., Stewart, A.M., Landsman, S., Collins, C., Gebhardt, M., Robinson, K., Behavioral effects of bidirectional modulation of brain monoamines by reserpine and d-amphetamine in zebrafish (2014) Brain Res, 1527, pp. 108-116; Kyzar, E.J., Kalueff, A.V., Exploring hallucinogen pharmacology and psychedelic medicine with zebrafish models (2016) Zebrafish, 13, pp. 379-390; Lara, D.R., Souza, D.O., Schizophrenia: a purinergic hypothesis (2000) Med Hypotheses, 54, pp. 157-166; Lau, B., Bretaud, S., Huang, Y., Lin, E., Guo, S., Dissociation of food and opiate preference by a genetic mutation in zebrafish (2006) Genes Brain Behav, 5, pp. 497-505; Levin, E.D., Bencan, Z., Cerutti, D.T., Anxiolytic effects of nicotine in zebrafish (2007) Physiol Behav, 90, pp. 54-58; Lieberman, J.A., Stroup, T.S., McEvoy, J.P., Swartz, M.S., Rosenheck, R.A., Perkins, D.O., Effectiveness of antipsychotic drugs in patients with chronic schizophrenia (2005) N Engl J Med, 353, pp. 1209-1223; Ljunggren, E.E., Haupt, S., Ausborn, J., Ampatzis, K., El Manira, A., Optogenetic activation of excitatory premotor interneurons is sufficient to generate coordinated locomotor activity in larval zebrafish (2014) J Neurosci, 34, pp. 134-139; Loebrich, S., Nedivi, E., The function of activity-regulated genes in the nervous system (2009) Physiol Rev, 89, pp. 1079-1103; Lombardo, S., Maskos, U., Role of the nicotinic acetylcholine receptor in Alzheimer's disease pathology and treatment (2015) Neuropharmacology, 96, pp. 255-262; López-Patiño, M., Yu, L., Cabral, E.M., Zhdanova, I., Anxiogenic effects of cocaine withdrawal in zebrafish (2008) Physiol Behav, 93, pp. 160-171; Lovallo, W.R., Cortisol secretion patterns in addiction and addiction risk (2006) Int J Psychophysiol, 59, pp. 195-202; Love, D.R., Pichler, F.B., Dodd, A., Copp, B.R., Greenwood, D.R., Technology for high-throughput screens: the present and future using zebrafish (2004) Curr Opin Biotechnol, 15, pp. 564-571; Lucassen, P., Oomen, C., Schouten, M., Encinas, J., Fitzsimons, C., Adult neurogenesis, chronic stress and depression (2016) Adult Neurogenesis in the Hippocampus: Health, Psychopathology, and Brain Disease, pp. 177-206. , In, Academic Press, Elsevier, Amsterdam, p; Lucke-Wold, B., The varied uses of conditioned place preference in behavioral neuroscience research: an investigation of alcohol administration in model organisms (2011) Impulse (Columbia, SC), 2011, pp. 1-13; Lundegaard, P.R., Anastasaki, C., Grant, N.J., Sillito, R.R., Zich, J., Zeng, Z., MEK inhibitors reverse cAMP-mediated anxiety in zebrafish (2015) Chem Biol, 22, pp. 1335-1346; Magno, L.D.P., Fontes, A., Gonçalves, B.M.N., Gouveia, A., Pharmacological study of the light/dark preference test in zebrafish (Danio rerio): waterborne administration (2015) Pharmacol Biochem Behav, 135, pp. 169-176; Mahmood, F., Fu, S., Cooke, J., Wilson, S.W., Cooper, J.D., Russell, C., A zebrafish model of CLN2 disease is deficient in tripeptidyl peptidase 1 and displays progressive neurodegeneration accompanied by a reduction in proliferation (2013) Brain, 136, pp. 1488-1507; Marcon, M., Herrmann, A.P., Mocelin, R., Rambo, C.L., Koakoski, G., Abreu, M.S., Prevention of unpredictable chronic stress-related phenomena in zebrafish exposed to bromazepam, fluoxetine and nortriptyline (2016) Psychopharmacology (Berl), 233, pp. 3815-3824; Martín, I., Gómez, A., Salas, C., Puerto, A., Rodríguez, F., Dorsomedial pallium lesions impair taste aversion learning in goldfish (2011) Neurobiol Learn Mem, 96, pp. 297-305; Mathur, P., Berberoglu, M.A., Guo, S., Preferene for ethanol in zebrafish following a single exposure (2011) Behav Brain Res, 217, pp. 128-133; Mathur, P., Guo, S., Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehavioral phenotypes (2010) Neurobiol Dis, 40, pp. 66-72; Maximino, C., Herculano, A.M., A review of monoaminergic neuropsychopharmacology in zebrafish (2010) Zebrafish, 7, pp. 359-378; McCammon, J.M., Sive, H., Challenges in understanding psychiatric disorders and developing therapeutics: a role for zebrafish (2015) Dis Model Mech, 8, pp. 647-656; McCarroll, M., Gendelev, L., Keiser, M., Kokel, D., Leveraging large-scale behavioral profiling in zebrafish to explore neuroactive polypharmacology (2016) ASC Chem Biol, 11, pp. 842-849; McGown, A., McDearmid, J.R., Panagiotaki, N., Tong, H., Al Mashhadi, S., Redhead, N., Early interneuron dysfunction in ALS: insights from a mutant sod1 zebrafish model (2013) Ann Neurol, 73, pp. 246-258; Mead, A.N., Vasilaki, A., Spyraki, C., Duka, T., Stephens, D.N., AMPA-receptor involvement in c-fos expression in the medial prefrontal cortex and amygdala dissociates neural substrates of conditioned activity and conditioned reward (1999) Eur J Neurosci, 11, pp. 4089-4098; Merritt, K., McGuire, P., Egerton, A., Relationship between glutamate dysfunction and symptoms and cognitive function in psychosis (2013) Front Psych, pp. 86-93; Meyer, A., Schartl, M., Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions (1999) Curr Opin Cell Biol, 11, pp. 699-704; Mi, G., Gao, Y., Yan, H., Jin, X., Ye, E., Liu, S., l-Scoulerine attenuates behavioural changes induced by methamphetamine in zebrafish and mice (2016) Behav Brain Res, 298, pp. 97-104; Miyamoto, S., Duncan, G.E., Marx, C.E., Lieberman, J.A., Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs (2005) Mol Psychiatry, 10, pp. 79-104; Mobini, S., Chiang, T.-J., Ho, M.-Y., Bradshaw, C., Szabadi, E., Comparison of the effects of clozapine, haloperidol, chlorpromazine and d-amphetamine on performance on a time-constrained progressive ratio schedule and on locomotor behaviour in the rat (2000) Psychopharmacology (Berl), 152, pp. 47-54; Mocelin, R., Herrmann, A.P., Marcon, M., Rambo, C.L., Rohden, A., Bevilaqua, F., N-acetylcysteine prevents stress-induced anxiety behavior in zebrafish (2015) Pharmacol Biochem Behav, 139, pp. 121-126; Moghaddam, B., Jackson, M.E., Glutamatergic animal models of schizophrenia (2003) Ann N Y Acad Sci, 1003, pp. 131-137; Moussavi Nik, S.H., Croft, K., Mori, T.A., Lardelli, M., The comparison of methods for measuring oxidative stress in zebrafish brains (2014) Zebrafish, 11, pp. 248-254; Moussavi Nik, S.H., Newman, M., Lardelli, M., The response of HMGA1 to changes in oxygen availability is evolutionarily conserved (2011) Exp Cell Res, 317, pp. 1503-1512; Mueller, T., Dong, Z., Berberoglu, M.A., Guo, S., The dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei) (2011) Brain Res, 1381, pp. 95-105; Mueller, T., Wullimann, M., (2015) Atlas of early Zebrafish Brain Development: A Tool for Molecular Neurogenetics, , Academic Press, Amsterdam, Netherland; Nasevicius, A., Ekker, S.C., Effective targeted gene ‘knockdown’ in zebrafish (2000) Nat Genet, 26, pp. 216-220; Nestler, E.J., The origins of molecular psychiatry (2013) J Mol Psychiatry, 1, pp. 1-2; Newman, M., Verdile, G., Martins, R.N., Lardelli, M., Zebrafish as a tool in Alzheimer's disease research (2011) Biochim Biophys Acta (BBA) - Mol Basis Dis, 1812, pp. 346-352; Nguyen, M., Stewart, A.M., Kalueff, A.V., Aquatic blues: modeling depression and antidepressant action in zebrafish (2014) Prog Neuropsychopharmacol Biol Psychiatry, 55, pp. 26-39; Ninkovic, J., Bally-Cuif, L., The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse (2006) Methods, 39, pp. 262-274; Ninkovic, J., Folchert, A., Makhankov, Y.V., Neuhauss, S.C.F., Sillaber, I., Straehle, U., Genetic identification of AChE as a positive modulator of addiction to the psychostimulant D-amphetamine in zebrafish (2006) J Neurobiol, 66, pp. 463-475; Noldus, L.P., (2016) Daniovision, , http://www.noldus.com/animal-behavior-research/products/daniovision, Retrieved from, (accessed 2/8/2016); Noldus, L.P., (2016) Shoaling behavior in zebrafish, , http://www.noldus.com/animal-behaviorresearch/solutions/research-fish/shoaling-behavior, Retrieved from, (accessed 2/8/2016); Nornes, S., Casper, G., Esther, C., Ey, P., Lardelli, M., Developmental control of Presenilin1 expression, endoproteolysis, and interaction in zebrafish embryos (2003) Exp Cell Res, 289, pp. 124-132; Nornes, S., Newman, M., Wells, S., Verdile, G., Martins, R.N., Lardelli, M., Independent and cooperative action of Psen2 with Psen1 in zebrafish embryos (2009) Exp Cell Res, 315, pp. 2791-2801; North, T.E., Goessling, W., Walkley, C.R., Lengerke, C., Kopani, K.R., Lord, A.M., Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis (2007) Nature, 447, pp. 1007-1011; Northcutt, R.G., Forebrain evolution in bony fishes (2008) Brain Res Bull, 18, pp. 191-205; Orger, M.B., Portugues, R., Correlating whole brain neural activity with behavior in head-fixed larval zebrafish (2016) Methods Mol Biol (Clifton, NJ), 1451, p. 307; Otto, M.W., Pollack, M.H., Sachs, G.S., Reiter, S.R., Meltzer-Brody, S., Rosenbaum, J.F., Discontinuation of benzodiazepine treatment: efficacy of cognitive-behavioral therapy for patients with panic disorder (1993) Am J Psychiatry, 150, pp. 1485-1490; Pando, M., Sassone-Corsi, P., Unraveling the mechanisms of the vertebrate circadian clock: zebrafish may light the way (2002) Bioessays, 24, pp. 419-426; Pannia, E., Tran, S., Rampersad, M., Gerlai, R., Acute ethanol exposure induces behavioural differences in two zebrafish (Danio rerio) strains: a time course analysis (2014) Behav Brain Res, 259, pp. 174-185; Panula, P., Chen, Y.-C., Priyadarshini, M., Kudo, H., Semenova, S., Sundvik, M., The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases (2010) Neurobiol Dis, 40, pp. 46-57; Panula, P., Sallinen, V., Sundvik, M., Kolehmainen, J., Torkko, V., Tiittula, A., Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseases (2006) Zebrafish, 3, pp. 235-247; Park, E., Lee, Y., Kim, Y.K., Lee, C.J., Cholinergic modulation of neural activity in the telencephalon of the zebrafish (2008) Neurosci Lett, 439, pp. 79-83; Parker, M.O., Brock, A.J., Walton, R.T., Brennan, C.H., The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function (2013) Front Neural Circuits, 7, pp. 1-13; Pavlidis, M., Sundvik, M., Chen, Y.-C., Panula, P., Adaptive changes in zebrafish brain in dominant–subordinate behavioral context (2011) Behav Brain Res, 225, pp. 529-537; Pavlidis, M., Theodoridi, A., Tsalafouta, A., Neuroendocrine regulation of the stress response in adult zebrafish, Danio rerio (2015) Prog Neuropsychopharmacol Biol Psychiatry, 60, pp. 121-131; Pérez-Escudero, A., Vicente-Page, J., Hinz, R.C., Arganda, S., de Polavieja, G.G., idTracker: tracking individuals in a group by automatic identification of unmarked animals (2014) Nat Methods, 11, pp. 743-748; Perry, E.K., Tomlinson, B.E., Blessed, G., Bergmann, K., Gibson, P.H., Perry, R.H., Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia (1978) Br Med J, 2, pp. 1457-1459; Petzold, A.M., Balciunas, D., Sivasubbu, S., Clark, K.J., Bedell, V.M., Westcot, S.E., Nicotine response genetics in the zebrafish (2009) Proc Natl Acad Sci, 106, pp. 18662-18667; Piato, A.L., Capiotti, K.M., Tamborski, A.R., Oses, J.P., Barcellos, L.J.G., Bogo, M.R., Unpredictable chronic stress model in zebrafish (Danio rerio): behavioral and physiological responses (2011) Prog Neuropsychopharmacol Biol Psychiatry, 35, pp. 561-567; Plaut, I., Effects of fin size on swimming performace, swimming behaviour and routine activity of zebrafish Danio rerio (2000) J Exp Biol, 203, pp. 813-820; Porsolt, R.D., Animal models of depression: utility for transgenic research (2000) Rev Neurosci, 11, pp. 53-58; Portavella, M., Torres, B., Salas, C., Avoidance response in goldfish: emotional and temporal involvement of medial and lateral telencephalic pallium (2004) J Neurosci, 24, pp. 2335-2342; Purdie, E.L., Samsudin, S., Eddy, F.B., Codd, G.A., Effects of the cyanobacterial neurotoxin β-N-methylamino-L-alanine on the early life stage development of zebrafish (Danio rerio) (2009) Aquat Toxicol, 95, pp. 279-284; Purushothaman, S., Saxena, S., Meghah, V., Lakshmi, M., Singh, S.K., Brahmendra Swamy, C.V., Proteomic and gene expression analysis of zebrafish brain undergoing continuous light/dark stress (2015) J Sleep Res, 24, pp. 458-465; Qin, M., Wong, A., Seguin, D., Gerlai, R., Induction of social behavior in zebrafish: live versus computer animated fish as stimuli (2014) Zebrafish, 11, pp. 185-197; Ragozzino, M.E., Detrick, S., Kesner, R.P., Involvement of the prelimbic–infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning (1999) J Neurosci, 19, pp. 4585-4594; Ramesh, T., Lyon, A.N., Pineda, R.H., Wang, C., Janssen, P.M., Canan, B.D., A genetic model of amyotrophic lateral sclerosis in zebrafish displays phenotypic hallmarks of motoneuron disease (2010) Dis Model Mech, 3, pp. 652-662; Rao, K.D., Alex, A., Verma, Y., Thampi, S., Gupta, P.K., Real-time in vivo imaging of adult Zebrafish brain using optical coherence tomography (2009) J Biophotonics, 2, pp. 288-291; Rauch, S.L., Whalen, P.J., Shin, L.M., McInerney, S.C., Macklin, M.L., Lasko, N.B., Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study (2000) Biol Psychiatry, 47, pp. 769-776; Renier, C., Faraco, J.H., Bourgin, P., Motley, T., Bonaventure, P., Rosa, F., Genomic and functional conservation of sedative-hypnotic targets in the zebrafish (2007) Pharmacogenet Genomics, 17, pp. 237-253; Richendrfer, H., Pelkowski, S.D., Colwill, R.M., Creton, R., On the edge: pharmacological evidence for anxiety-related behavior in zebrafish larvae (2012) Behav Brain Res, 228, pp. 99-106; Richetti, S., Blank, M., Capiotti, K., Piato, A., Bogo, M., Vianna, M., Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish (2011) Behav Brain Res, 217, pp. 10-15; Rihel, J., Prober, D., Arvanites, A., Lam, K., Zimmerman, S., Jang, S., Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation (2010) Science, 327, pp. 348-351; Rosemberg, D.B., Braga, M.M., Rico, E.P., Loss, C.M., Córdova, S.D., Mussulini, B.H.M., Behavioral effects of taurine pretreatment in zebrafish acutely exposed to ethanol (2012) Neuropharmacology, 63, pp. 613-623; Rosen, D.R., Siddique, T., Patterson, D., Figlewicz, D.A., Sapp, P., Hentati, A., Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis (1993) Nature, 362, pp. 59-62; Rossor, M.N., Iversen, L.L., Reynolds, G.P., Mountjoy, C.Q., Roth, M., Neurochemical characteristics of early and late onset types of Alzheimer's disease (1984) Br Med J, 288, pp. 961-964; Rowland, L.P., Shneider, N.A., Amyotrophic lateral sclerosis (2001) N Engl J Med, 344, pp. 1688-1700; Saitsu, H., Kato, M., Mizuguchi, T., Hamada, K., Osaka, H., Tohyama, J., De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy (2008) Nat Genet, 40, pp. 782-788; Sallinen, J., Torkko, V., Sundvik, M., Reenila, I., Khrustalyov, D., Kaslin, J., MPTP and MPP+ target specific aminergic cell populations in larval zebrafish (2009) J Neurochem, 108, pp. 719-731; Saus, E., Brunet, A., Armengol, I., Alonso, P., Crespo, J.M., Fernandez-Aranda, F., Comprehensive copy number variant (CNV) analysis of neuronal pathways genes in psychiatric disorders identifies rare variants within patients (2010) J Psychiatr Res, 44, pp. 971-978; Saverino, C., Gerlai, R., The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish (2008) Behav Brain Res, 191, pp. 77-87; Schaffer, A.E., Eggens, V.R.C., Caglayan, A.O., Reuter, M.S., Scott, E., Coufal, N.G., CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration (2014) Cell, 157, pp. 651-663; Biological insights from 108 schizophrenia-associated genetic loci (2014) Nature, 511, pp. 421-427; Schobel, S.A., Chaudhury, N.H., Khan, U.A., Paniagua, B., Styner, M.A., Asllani, I., Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver (2013) Neuron, 78, pp. 81-93; Seibt, K.J., da Luz Oliveira, R., Bogo, M.R., Senger, M.R., Bonan, C.D., Investigation into effects of antipsychotics on ectonucleotidase and adenosine deaminase in zebrafish brain (2015) Fish Physiol Biochem, 41, pp. 1383-1392; Seibt, K.J., da Luz Oliveira, R., Zimmermann, F.F., Capiotti, K.M., Bogo, M.R., Ghisleni, G., Antipsychotic drugs prevent the motor hyperactivity induced by psychotomimetic MK-801 in zebrafish (Danio rerio) (2010) Behav Brain Res, 214, pp. 417-422; Seibt, K.J., Piato, A.L., da Luz Oliveira, R., Capiotti, K.M., Vianna, M.R.M., Bonan, C.D., Antipsychotic drugs reverse MK-801-induced cognitive and social interaction deficits in zebrafish (Danio rerio) (2011) Behav Brain Res, 224, pp. 135-139; Seligman, M.E., Beagley, G., Learned helplessness in the rat (1975) J Comp Physiol Psychol, 88, pp. 534-541; Seligman, M.E., Rosellini, R.A., Kozak, M.J., Learned helplessness in the rat: time course, immunization, and reversibility (1975) J Comp Physiol Psychol, 88, pp. 542-547; Selkoe, D.J., Alzheimer's disease: genes, proteins, and therapy (2001) Physiol Rev, 81, pp. 741-766; Shen, J., Bronson, R.T., Chen, D.F., Xia, W., Selkoe, D.J., Tonegawa, S., Skeletal and CNS defects in presenilin-1-deficient mice (1997) Cell, 89, pp. 629-639; Shin, L.M., Rauch, S.L., Pitman, R.K., Amygdala, medial prefrontal cortex, and hippocampal function in PTSD (2006) Ann N Y Acad Sci, 1071, pp. 67-79; Smith, S.M., Vale, W.W., The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress (2006) Dialogues Clin Neurosci, 8, pp. 383-395; Southan, C., Sharman, J.L., Benson, H.E., Faccenda, E., Pawson, A.J., Alexander, S.P., The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands (2016) Nucl Acids Res, 44, pp. D1054-D1068; Spencer, J.P., Food for thought: the role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance (2008) Proc Nutr Soc, 67, pp. 238-252; Stein, M.B., Goldin, P.R., Sareen, J., Zorrilla, L.T., Brown, G.G., Increased amygdala activation to angry and contemptuous faces in generalized social phobia (2002) Arch Gen Psychiatry, 59, pp. 1027-1034; Stewart, A.M., Braubach, O., Spitsbergen, J., Gerlai, R., Kalueff, A.V., Zebrafish models for translational neuroscience research: from tank to bedside (2014) Trends Neurosci, 37, pp. 264-278; Stewart, A.M., Cachat, J., Gaikwad, S., Robinson, K.S., Gebhardt, M., Kalueff, A.V., Perspectives on experimental models of serotonin syndrome in zebrafish (2013) Neurochem Int, 62, pp. 893-902; Stewart, A.M., Gaikwad, S., Kyzar, E., Green, J., Roth, A., Kalueff, A.V., Modeling anxiety using adult zebrafish: a conceptual review (2012) Neuropharmacology, 62, pp. 135-143; Stewart, A.M., Gerlai, R., Kalueff, A.V., Developing higher-throughput zebrafish screens for in-vivo CNS drug discovery (2015) Front Behav Neurosci, 9, p. 14; Stewart, A.M., Grieco, F., Tegelenbosch, R.A., Kyzar, E.J., Nguyen, M., Kaluyeva, A., A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes (2015) J Neurosci Methods, 255, pp. 66-74; Stewart, A.M., Grossman, L., Nguyen, M., Maximino, C., Rosemberg, D.B., Echevarria, D.J., Aquatic toxicology of fluoxetine: understanding the knowns and the unknowns (2014) Aquat Toxicol (Amsterdam, Netherlands), 156, pp. 269-273; Stewart, A.M., Ullmann, J.F.P., Norton, W.H.J., Parker, M.O., Brennan, C.H., Gerlai, R., Molecular psychiatry of zebrafish (2015) Mol Psychiatry, 20, pp. 2-17; Stewart, A.M., Wong, K., Cachat, J.M., Gaikwad, S., Kyzar, E., Wu, N., Zebrafi sh models to study drug abuse-related phenotypes (2011) Rev Neurosci, 22, pp. 95-105; Strüber, N., Strüber, D., Roth, G., Impact of early adversity on glucocorticoid regulation and later mental disorders (2014) Neurosci Biobehav Rev, 38, pp. 17-37; Swain, H., Sigstad, C., Scalzo, F.M., Effects of dizocilpine (MK-801) on circling behavior, swimming activity, and place preference in zebrafish (Danio rerio) (2004) Neurotoxicol Teratol, 26, pp. 725-729; Swerdlow, N.R., Geyer, M.A., Braff, D.L., Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges (2001) Psychopharmacology (Berl), 156, pp. 194-215; Teng, Y., Xie, X., Walker, S., Rempala, G., Kozlowski, D., Mumm, J., Knockdown of zebrafish Lgi1a results in abnormal development, brain defects and a seizure-like behavioral phenotype (2010) Hum Mol Genet, 19, pp. 4409-4420; Tran, S., Chatterjee, D., Gerlai, R., An integrative analysis of ethanol tolerance and withdrawal in zebrafish (Danio rerio) (2015) Behav Brain Res, 276, pp. 161-170; Tran, S., Gerlai, R., Time-course of behavioural changes induced by ethanol in zebrafish (Danio rerio) (2013) Behav Brain Res, 252, pp. 204-213; Tye, K.M., Deisseroth, K., Optogenetic investigation of neural circuits underlying brain disease in animal models (2012) Nat Rev Neurosci, 13, pp. 251-266; Ullmann, J.F., Cowin, G., Kurniawan, N.D., Collin, S.P., A three-dimensional digital atlas of the zebrafish brain (2010) Neuroimage, 51, pp. 76-82; Vaccaro, A., Patten, S.A., Aggad, D., Julien, C., Maios, C., Kabashi, E., Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo (2013) Neurobiol Dis, 55, pp. 64-75; Vaccaro, A., Patten, S.A., Ciura, S., Maios, C., Therrien, M., Drapeau, P., Methylene blue protects against TDP-43 and FUS neuronal toxicity in C. elegans and D. rerio (2012) PLoS One, 7; Valdmanis, P.N., Rouleau, G.A., Genetics of familial amyotrophic lateral sclerosis (2008) Neurology, 70, pp. 144-152; Vatine, G., Vallone, D., Gothilf, Y., Foulkes, N., It's time to swim! Zebrafish and the circadian clock (2011) FEBS Lett, 4, p. 19; Voisin, T., Vellas, B., Diagnosis and treatment of patients with severe Alzheimer's disease (2009) Drugs Aging, 26, pp. 135-144; von Trotha, J.W., Vernier, P., Bally-Cuif, L., Emotions and motivated behavior converge on an amygdala-like structure in the zebrafish (2014) Eur J Neurol, 40, pp. 3302-3315; Wahbeh, H., Kishiyama, S.S., Zajdel, D., Oken, B.S., Salivary cortisol awakening response in mild Alzheimer disease, caregivers, and noncaregivers (2008) Alzheimer Dis Assoc Disord, 22, pp. 181-183; Wang, H., Comparative analysis of Period genes in teleost fish genomes (2008) J Mol Evol, 67, pp. 29-40; Wang, Y., Li, S., Liu, W., Wang, F., Hu, L.-F., Zhong, Z.-M., Vesicular monoamine transporter 2 (Vmat2) knockdown elicits anxiety-like behavior in zebrafish (2016) Biochem Biophys Res Commun, 470, pp. 792-797; Wang, Y., Li, S., Liu, W., Wang, F., Hu, L.-F., Zhong, Z., Vesicular monoamine transporter 2 (Vmat2) knockdown elicits anxiety-like behavior in zebrafish (2016) Biochem Biophys Res Commun, 470, pp. 792-797; Wang, Y., Takai, R., Yoshioka, H., Shirabe, K., Characterization and expression of serotonin transporter genes in zebrafish (2006) J Exp Med, 208, pp. 267-274; (2016) Epilepsy (Fact sheet No. 999), , World Health Organization; Wienholds, E., van Eeden, F., Kosters, M., Mude, J., Plasterk, R.H.A., Cuppin, E., Efficient target-selected mutagenesis in zebrafish (2003) Genome Res, 13, pp. 2700-2707; Winter, M.J., Redfern, W.S., Hayfield, A.J., Owen, S.F., Valentin, J.-P., Hutchinson, T.H., Validation of a larval zebrafish locomotor assay for assessing the seizure liability of early stage development drugs (2008) J Pharmacol Toxicol Methods, 57, pp. 176-187; Wong, K., Stewart, A.M., Gilder, T., Wu, N., Frank, K., Gaikwad, S., Modeling seizure-related behavioral and endocrine phenotypes in adult zebrafish (2010) Brain Res, 1348, pp. 209-215; Wulliman, M.F., Rupp, B., Reichert, H., (2012) Neuroanatomy of the Zebrafish Brain: A Topological Atlas, , Birkhäuser, Basel, Switzerlan; Wyart, C., Del Bene, F., Let there be light: zebrafish neurobiology and the optogenetic revolution (2011) Rev Neurosci, 22, pp. 121-130; Wyatt, C., Bartoszek, E.M., Yaksi, E., Methods for studying the zebrafish brain: past, present and future (2015) Eur J Neurosci, 42, pp. 1746-1763; Zdebik, A.A., Mahmood, F., Stanescu, H.C., Kleta, R., Bockenhauer, D., Russell, C., Epilepsy in kcnj10 morphant zebrafish assessed with a novel method for long-term EEG recordings (2013) PLoS One, 8; Zhang, J., Yuan, Z., (2015) In vivo non-invasive imaging of the adult zebrafish brain with a 1325 nm long range spectral-domain optical coherence tomography system, , #x0026;, 1–3; Zhang, S.-W., Liu, Y.-X., Changes of serum adrenocorticotropic hormone and cortisol levels during sleep seizures (2008) Neurosci Bull, 24, pp. 84-88; Zhdanova, I., Sleep in zebrafish (2006) Zebrafish, 3, pp. 215-226; Zhou, Q.G., Zhu, L.J., Wu, H.Y., Luo, C.X., Chang, L., Zhu, D.Y., Hippocampal neuronal nitric oxide synthase mediates the stress-related depressive behaviors of glucocorticoids by downregulating glucocorticoid receptor (2011) J Neurosci, 31, pp. 7579-7590; Ziv, L., Muto, A., Schoonheim, P.J., Meijsing, S.H., Strasser, D., Ingraham, H.A., An affective disorder in zebrafish with mutation of the glucocorticoid receptor (2013) Mol Psychiatry, 18, pp. 681-691; Zon, L.I., Translational research: the path for bringing discovery to patients (2014) Cell Stem Cell, 14, pp. 146-148
Correspondence Address Kalueff, A.V.; The International Zebrafish Neuroscience Research Consortium (ZNRC)United States; email: avkalueff@gmail.com
Publisher John Wiley and Sons Inc.
CODEN BJPCB
Language of Original Document English
Abbreviated Source Title Br. J. Pharmacol.
Source Scopus