References |
Xie, R., Battaglia, D., Peng, X., 'Colloidal InP Nanocrystals as Efficient Emitters Covering Blue to Near-Infrared' (2007) J. Am. Chem. Soc, 129 (50), pp. 15432-15433; Lee, S.-H., Lee, K.-H., Jo, J.-H., Park, B., Kwon, Y., Jang, H.S., Yang, H., 'Remote-type, high-color gamut white light-emitting diode based on InP quantum dot color converters' (2014) Opt. Mater. Express, 4 (7), pp. 1297-1302; Song, W.-S., Lee, S.-H., Yang, H., 'Fabrication of warm, high CRI white LED using non-cadmium quantum dots' (2013) Opt. Mater. Express, 3 (9), pp. 1468-1473; Kamat, P.V., 'Quantum dot solar cells. Semiconductor nanocrystals as light harvesters' (2008) J. Phys. Chem. C, 112 (48), pp. 18737-18753; Rempel, A.A., Kozlova, E.A., Gorbunova, T.I., Cherepanova, S.V., Gerasimov, E.Y., Kozhevnikova, N.S., Valeeva, A.A., Shchipunov, Y.A., 'Synthesis and solar light catalytic properties of titania-cadmium sulfide hybrid nanostructures' (2015) Catal. Commun, 68, pp. 61-66; Savchenko, S.S., Vokhmintsev, A.S., Weinstein, I.A., 'Luminescence parameters of InP/ZnS@AAO nanostructures' (2016) AIP Conf. Proc, 1717; Savchenko, S.S., Vokhmintsev, A.S., Weinstein, I.A., 'Optical properties of InP/ZnS quantum dots deposited into nanoporous anodic alumina' (2016) J. Phys. Conf. Ser, 741 (1); Hussain, S., Won, N., Nam, J., Bang, J., Chung, H., Kim, S., 'One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging' (2009) ChemPhysChem, 10 (9-10), pp. 1466-1470; Brichkin, S.B., Spirin, M.G., Tovstun, S.A., Gak, V.Y., Mart'yanova, E.G., Razumov, V.F., 'Colloidal quantum dots InP@ZnS: Inhomogeneous broadening and distribution of luminescence lifetimes' (2016) High Energy Chem, 50 (5), pp. 395-399; Reiss, P., Protière, M., Li, L., 'Core/Shell semiconductor nanocrystals' (2009) Small, 5 (2), pp. 154-168; Narayanaswamy, A., Feiner, L.F., Van Der Zaag, P.J., 'Temperature dependence of the photoluminescence of InP/ZnS quantum dots' (2008) J. Phys. Chem. C, 112 (17), pp. 6775-6780; Narayanaswamy, A., Feiner, L.F., Meijerink, A., van Der Zaag, P.J., 'The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots' (2009) ACS Nano, 3 (9), pp. 2539-2546; Weller, H., 'Colloidal Semiconductor Q-Particles: Chemistry in the Transition Region Between Solid State and Molecules' (1993) Angew. Chem. Int. Ed. Engl, 32 (1), pp. 41-53; Talsky, G., (1994) Derivative Spectrophotometry: Low and Higher Order, , (VCH); Babichev, A.P., (1991) Handbook of Physical Quantities, , I. S.Grigor'ev and E. Z. Meilikhov, eds. (Energoatomizdat); Kho, R., Torres-Martínez, C.L., Mehra, R.K., 'A simple colloidal synthesis for gram-quantity production of water-soluble ZnS nanocrystal powders' (2000) J. Colloid Interface Sci, 227 (2), pp. 561-566; Vainshtein, I.A., Zatsepin, A.F., Kortov, V.S., 'Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap' (1999) Phys. Solid State, 41 (6), pp. 905-908; Fan, H.Y., 'Temperature dependence of the energy gap in semiconductors' (1951) Phys. Rev, 82 (6), pp. 900-905; O'Donnell, K.P., Chen, X., 'Temperature dependence of semiconductor band gaps' (1991) Appl. Phys. Lett, 58 (25), pp. 2924-2926; Zilli, A., De Luca, M., Tedeschi, D., Fonseka, H.A., Miriametro, A., Tan, H.H., Jagadish, C., Polimeni, A., 'Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires' (2015) ACS Nano, 9 (4), pp. 4277-4287; Viña, L., Logothetidis, S., Cardona, M., 'Temperature dependence of the dielectric function of germanium' (1984) Phys. Rev. B, 30 (4), pp. 1979-1991; Chen, L., Bao, H., Tan, T., Prezhdo, O.V., Ruan, X., 'Shape and temperature dependence of hot carrier relaxation dynamics in spherical and elongated CdSe quantum dots' (2011) J. Phys. Chem. C, 115 (23), pp. 11400-11406; Olkhovets, A., Hsu, R.-C., Lipovskii, A., Wise, F.W., 'Size-Dependent Temperature Variation of the Energy Gap in Lead-Salt Quantum Dots' (1998) Phys. Rev. Lett, 81 (16), pp. 3539-3542; Alfrey, G.F., Borcherds, P.H., 'Phonon frequencies from the Raman spectrum of indium phosphide' (1972) J. Phys. C Solid State Phys, 5 (20), pp. L275-L278; Turner, W.J., Reese, W.E., Pettit, G.D., 'Exciton absorption and emission in InP' (1964) Phys. Rev, 136 (5A), pp. A1467-A1470; Vaganov, S.A., Seisyan, R.P., 'Temperature-dependent integral exciton absorption in semiconducting InP crystals' (2012) Tech. Phys. Lett, 38 (2), pp. 121-124; Lee, D., Johnson, A.M., Zucker, J.E., Feldman, R.D., Austin, R.F., 'Room temperature excitonic absorption in CdZnTe/ZnTe quantum wells: Contributions to exciton linewidth' (1991) J. Appl. Phys, 69 (9), pp. 6722-6724; Weinstein, I.A., Zatsepin, A.F., Shchapova, Y.V., 'The phonon-assisted shift of the energy levels of localized electron states in statically disordered solids' (1999) Physica B, 263-264, pp. 167-169; Weinstein, I.A., Zatsepin, A.F., 'Modified Urbach's rule and frozen phonons in glasses' (2004) Phys. Status Solidi, 1 (11), pp. 2916-2919; Skuja, L., 'Defect studies in vitreous silica and related materials: Optically active oxygen-deficiency-related centers in amorphous silicon dioxide' (1998) J. Non-Cryst. Solids, 239 (1-3), pp. 16-48 |