IR spectroscopic determination of the refractive index of Ag1−xTlxBr1−0.54xI0.54x (0 ⩽ x ⩽ 0.05) crystals / Korsakov A., Salimgareev D., Lvov A., Zhukova L. // Optics and Laser Technology. - 2017. - V. 93, l. . - P. 18-23.

ISSN:
00303992
Type:
Article
Abstract:
In this paper we examined materials relevant for manufacturing various near- and mid-infrared fiber optical elements: AgBr and – presumably for the first time – AgBr – (TlBr0.46I0.54) up to 5% of TlBr0.46I0.54, produced by hot embossing. Both real and imaginary parts of refractive indices were determined within the wavelength of 3.0–14.0 μm for samples of these materials. An increase of the substituent in AgBr caused a monotonous rise of the refractive index, while for every certain composition, a shift towards longer wavelengths led to its decrease. This dependence was depicted on dispersion curves, which clearly demonstrate that optical fibers, drawn from AgBr – (TlBr0.46I0.54) crystals, can be used within the wide mid-infrared range, since the dispersion coefficient here is minimal and constant. To determine the refractive index at the absorption edge (from 0.465 to 0.484 μm), we scrutinized eleven calculation models, with preferable Moss relation. © 2017 Elsevier Ltd
Author keywords:
Refractive indices; Silver and thallium halides; Solid solution crystals
Index keywords:
Dispersion (waves); Dispersions; Infrared devices; Optical fibers; Silver; Silver alloys; Silver halides; Calculation models; Dispersion coefficient; Dispersion curves; Mid-infrared range; Real and im
DOI:
10.1016/j.optlastec.2017.01.03
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013177231&doi=10.1016%2fj.optlastec.2017.01.030&partnerID=40&md5=5f837138579cc134afbde1bdd9529570
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013177231&doi=10.1016%2fj.optlastec.2017.01.030&partnerID=40&md5=5f837138579cc134afbde1bdd9529570
Affiliations Department of physical chemistry and chemistry of colloids, Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Yekaterinburg, Russian Federation
Author Keywords Refractive indices; Silver and thallium halides; Solid solution crystals
References Polyakova, G.V., Lisitskiy, I.S., (2016) Thallium and silver halides – unique optical materials for the infrared, laser, and radiation devices, Scientific paper collection «Topical problems of contemporary mathematical and natural sciences», pp. 24-27; Korsakov, A.S., Zhukova, L.V., Shmygalev, A.S., Salimgareev, D.D., Korsakov, V.S., IR-probes for Fourier spectrometry, Optics InfoBase Conference Papers (2012) Specialty Optical Fibers, , Code 107788; Korsakov, A., Chazov, A., Zhukova, L., Terlyga, N., Vrublevsky, D., Korsakov, V., Zhukov, V., AgBr – TlI, AgBr – (KRS-5) photonic crystals and fibers based on them for middle and far infrared (2012) Optics InfoBase Conference Papers, Nonlinear Photonics, , Code 102627; Korsakov, A.S., Zhukova, L.V., Korsakov, V.S., Vrublevsky, D.S., Salimgareev, D.D., Research of phase equilibriums and modelling of structure of AgBr – (TlBr0.46I0.54) system (2014) J. Tsvetnye Metally, 8, pp. 50-54; Yavorsky, B.M., Detlaf, A.A., (1972) Physics course, Higher school (Vysshaya Shkola), Moscow; Landsberg, G.S., Optics (2003), FIZMATLIT Moscow; Zhukova, L.V., Korsakov, A.S., Salimgareev, D.D., Infrared Crystals: Theory and Practice (2015), Ural Federal University Ekaterinburg; Zhukova, L.V., Korsakov, A.S., Vrublevsky, D.S., New Infrared Materials: Crystals and Optical Fibers (2015), Ural Federal University Ekaterinburg; Korsakov, A.S., Vrublevsky, D.S., Korsakov, V.S., Zhukova, L.V., Investigating the optical properties of polycrystalline AgCl1−xBrx (0 ⩽ x ⩽ 1) and Ag0.95Tl0.05Br0.95I0.05 for IR engineering (2015) J Appl. Opt., 54, pp. 8004-8009; Dharma, J., (2012) Simple method of measuring the band gap energy value of TiO2 in the powder form using a UV/Vis/NIR spectrometer, PerkinElmer, Application note: UV/Vis/NIR Spectrometer, Shelton, CT, USA; Ravindra, N., Ganapathy, P., Choi, J., Energy gap – refractive index relations in semiconductors – an overview (2007) J. Infrared Phys. & Technol., 50, pp. 21-29; Moss, T., Relations between the refractive index and energy gap of semiconductors (1985) J. Phys. Status Solidi B, 131, pp. 415-427; Herve, P., Vandamme, L., General relation between refractive index and energy gap in semiconductors (1994) J. Infrared Phys. & Technol., 35, pp. 609-615; Kumar, V., Singh, J., Model for calculating the refractive index of different materials (2010) Indian J. Pure & Appl. Phys., 48, pp. 571-574; Reddy, R., Anjaneyulu, S., Viswanath, R., Optical and electronic properties of compound semiconductors (1992) J. Infrared Phys., 33, pp. 385-388; Reddy, R., Ahammed, Y., A study on the Moss relation (1995) J. Infrared Phys. & Technol., 36, pp. 825-830; Tripathy, S., Refractive indices of semiconductors from energy gaps (2015) J. Opt. Mater., 46, pp. 240-246; Anani, M., Mathieu, C., Hamza, A., Lebid, S., Zouaoui, C., Amar, Y., Model for calculating the refractive index of a III-IV semiconductor (2008) J. Comput. Mater. Sci., 41, pp. 570-575; Dionne, G., Woolley, J.C., Optical properties of some Pb1−xSnxTe alloys determined from infrared plasma reflectivity (1972) J. Phys. Rev. B, 6, pp. 3898-3913; Gopal, V., Energy gap-refractive index interrelation (1982) J. Infrared Phys., 22, pp. 255-257; Fleming, J.W., Dispersion in GeO2–SiO2 glasses (1984) J. App. Opt., 23, pp. 4486-4493; Padera, F., (2013) Measuring absorptance (k) and refractive index (n) of thin films with the PerkinElmer Lambda 950/1050 high performance UV-Vis/NIR Spectrometers, p. 9. , PerkinElmer Inc, Application note: UV/Vis Spectroscopy; Rogers, J.R., Hopler, M.D., Conversion of group refractive index to phase refractive index (1988) J. Opt. Soc. Am., A5, pp. 1595-1600; Schröter, H., On the refractive indices of some heavy-metal halides in the visible and calculation of interpolation formulas for dispersion (1931) Z. Phys., 67, pp. 24-36; Electronic resource (<>), Tel Aviv University, Applied physics group, , http://www.tau.ac.il/~applphys/, (19.10.2016); Palik, E.D., Handbook of Optical Constants of Solids, Version 3 (1988), Academic press USA; White, J.J., Optical properties of silver bromide (1972) J. Opt. Soc. Am., 62 (2), pp. 212-218; Voronkova, E., Gretchushnikov, B., Distler, G., Petrov, I., (1963) Optical Materials for the Infrared Engineering, Nauka (Science), Moscow; Manifacier, J.C., Gasiot, J., Fillard, J.P., A simple method for the determination of the optical constants, n, k and the thickness of a weakly absorbing thin film (1976) J. Phys. E: Sci. Instrum., 9, pp. 1002-1004
Correspondence Address Zhukova, L.; Department of physical chemistry and chemistry of colloids, Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Russian Federation; email: l.v.zhukova@urfu.ru
Publisher Elsevier Ltd
CODEN OLTCA
Language of Original Document English
Abbreviated Source Title Opt Laser Technol
Source Scopus