References |
Chatterjee, S., Bhattacharyya, M., A biclustering approach for crowd judgment analysis (2015) Proceedings of the Second ACM IKDD Conference on Data Sciences, pp. 118-119; Comber, A., Brunsdon, C., See, L., Fritz, S., McCallum, I., Comparing expert and non-expert conceptualisations of the land: An analysis of crowdsourced land cover data (2013) COSIT 2013. LNCS, 8116, pp. 243-260. , Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.), Springer, Heidelberg; Dawid, A.P., Skene, A.M., Maximum likelihood estimation of observer error-rates using the EM algorithm (1979) Appl. Stat, 28, pp. 20-28; Dempster, A.P., Maximum likelihood from incomplete data via the EM algorithm (1977) JRSS Ser. B, 39, pp. 1-38; Jagabathula, S., Reputation-based worker filtering in crowdsourcing (2014) Advances in Neural Information Processing Systems, pp. 2492-2500; Karger, D.R., Oh, S., Shah, D., Iterative learning for reliable crowdsourcing systems (2011) Advances in Neural Information Processing Systems, pp. 1953-1961; Khattak, F.K., Salleb-Aouissi, A., Improving crowd labeling through expert evaluation (2012) 2012 AAAI Spring Symposium Series; Kim, H.C., Ghahramani, Z., Bayesian classifier combination (2012) International Conference on Artificial Intelligence and Statistics, pp. 619-627; Liu, Q., Peng, J., Ihler, A.T., Variational inference for crowdsourcing (2012) Advances in Neural Information Processing Systems, pp. 692-700; Moreno, P.G., Teh, Y.W., Perez-Cruz, F., Artés-Rodríguez, A., (2014) Bayesian Nonparametric Crowdsourcing, , arXiv preprint arXiv:1407.5017; Pareek, H., Ravikumar, P., Human boosting (2013) Proceedings of the 30Th International Conference on Machine Learning (ICML2013), pp. 338-346; Raykar, V.C., Eliminating spammers and ranking annotators for crowdsourced labeling tasks (2012) JMLR, 13, pp. 491-518; Raykar, V.C., Learning from crowds (2010) J. Mach. Learn. Res, 11, pp. 1297-1322; Salk, C.F., Sturn, T., See, L., Fritz, S., Perger, C., Assessing quality of volunteer crowdsourcing contributions: Lessons from the cropland capture game (2015) Int. J. Digit. Earth, 9, pp. 410-426; See, L., Building a hybrid land cover map with crowdsourcing and geographically weighted regression. ISPRS (2015) J. Photogramm. Remote Sens, 103, pp. 48-56; Sheshadri, A., Lease, M., Square: A benchmark for research on computing crowd consensus (2013) First AAAI Conference on Human Computation and Crowdsourcing; Simpson, E., Roberts, S., Psorakis, I., Smith, A., Dynamic Bayesian combination of multiple imperfect classifiers (2013) Decision Making and Imperfection, pp. 1-35. , Guy, T.V., Karny, M.,Wolpert, D. (eds.), Springer, Heidelberg; Tong, H., Li, M., Zhang, H., Zhang, C., Blur detection for digital images using wavelet transform (2004) 2004 IEEE International Conference on Multimedia and Expo, ICME 2004, 1, pp. 17-20. , IEEE; Zauner, C., (2010) Implementation and Benchmarking of Perceptual Image Hash Functions, , Ph.D. thesis; Zhu, X., Co-training as a human collaboration policy (2011) AAAI |