References |
Toth, P., Vigo, D., (2001) The Vehicle Routing Problem, , Society for Industrial and Applied Mathematics, Philadelphia, PA, USA; Dantzig, G.B., Ramser, J.H., (1959) Management Science, 6, pp. 80-91; Golden, B., Raghavan, S., Wasil, E.A., The vehicle routing problem : Latest advances and new challenges (2008) Operations Research/Computer Science Interfaces Series, 43. , Springer; Kumar, S., Panneerselvam, R., (2012) Intelligent Information Management, 4, pp. 66-74; Haimovich, M., Rinnooy Kan, A.H.G., (1985) Mathematics of Operations Research, 10, pp. 527-542; Papadimitriou, C., (1997) Theoretical Computer Science, pp. 237-244; Asano, T., Katoh, N., Tamaki, H., Tokuyama, T., (1996) IBM Tokyo Research; Arora, S., (1998) Journal of the ACM, 45; Das, A., Mathieu, C., A quasi-polynomial time approximation scheme for Euclidean capacitated vehicle routing (2010) Proceedings of the Twenty-first Annual ACM- SIAM Symposium on Discrete Algorithms, SODA '10, pp. 390-403. , Society for Industrial and Applied Mathematics, Philadelphia, PA, USA; Das, A., Mathieu, C., (2015) Algorithmica, 73, pp. 115-142; Khachay, M., Zaytseva, H., (2015) Combinatorial Optimization and Applications: 9th International Conference, COCOA 2015, Houston, TX, USA, December 18-20, 2015, Proceedings, pp. 178-190. , Springer International Publishing, Cham, Chap. Polynomial Time Approximation Scheme for Single-Depot Euclidean Capacitated Vehicle Routing Problem; Christofides, N., Worst-case analysis of a new heuristic for the traveling salesman problem (1975) Symposium on New Directions and Recent Results in Algorithms and Complexity, p. 441; Hubbert, S., Gia, Q.T.L., Morton, T.M., (2015) Spherical Radial Basis Functions, Theory and Applications, p. 150. , 1st ed., SpringerBriefs in Mathematics Springer International Publishing; Gimadi, E.K., Rykov, I.A., (2016) Doklady Mathematics, 93, pp. 117-120; Khachay, M., Neznakhina, K., (2015) Journal of Global Optimization |