Scintillation γ spectrometers for use at nuclear power plants (review) / Belousov M.P., Gromyko M.V., Ignatyev O.V. // Instruments and Experimental Techniques. - 2017. - V. 60, l. 1.

ISSN:
00204412
Type:
Review
Abstract:
In this review, it is shown that out of the 300 scintillators synthesized to date only LaBr3:Ce, CeBr3, YAlO3: Ce, and CsI:Tl crystals with the corresponding silicon photosensors (SiPSs) can be used as detectors in industrial γ-ray spectrometers intended for nuclear power plants. They are superior in their energy resolution and their resistance to mechanical and electromagnetic effects to spectrometers used today with a NaI:Tl crystal and a photomultiplier tube (PMT). A p–i–n photodiode (PD), an avalanche photodiode (APD), and a silicon photomultiplier (SiPM) are promising SiPSs. The properties of various assemblies of listed scintillators and photosensors are analyzed. A PD matches well with any scintillator. A spectrometer does not require LED stabilization of the scale, but its noise level must be reduced by selective PD cooling and the use of a light guide for coupling a massive scintillator and a SiPS with a small area of its sensitive surface. A spectrometer with an APD does not require photosensor cooling; however, LED stabilization of its energy scale is necessary. Application of an SiPM can rule out the use of a light concentrator (which is important for large CsI:Tl scintillators) and selective cooling, but this introduces nonlinearity at a short decay time and a high light yield in the scintillator (LaBr3:Ce and CeBr3) and also calls for an LED stabilization system for the spectrometer. The prospects for the development and application of new scintillation γ-ray spectrometers are discussed in this review. © 2017, Pleiades Publishing, Inc.
Author keywords:
Index keywords:
Cesium iodide; Cooling; Gamma ray spectrometers; Industrial plants; Ionization; Light emitting diodes; Metal halides; Nuclear energy; Nuclear fuels; Nuclear power plants; Optical sensors; Photodiodes;
DOI:
10.1134/S0020441217010171
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85014052943&doi=10.1134%2fS0020441217010171&partnerID=40&md5=e27a7f73c8e42a6bb1e1c353ecb33dda
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85014052943&doi=10.1134%2fS0020441217010171&partnerID=40&md5=e27a7f73c8e42a6bb1e1c353ecb33dda
Affiliations Institute of Physics and Technology, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Yekaterinburg, Russian Federation
References Brekhovskikh, L., (1960) Sov. Phys. Usp., 3 (1), p. 159; Hofstadter, R., (1948) Phys. Rev., 74 (1), p. 100; Moszynski, M., (2003) Nucl. Instrum. Methods Phys. Res., Sect. A: Acceler., Spectrom., Detect. Assoc. Equip., 505 (1-2), p. 101; Ottmar, H., Amador, P., Eberle, H., Erdmann, N., Schorle, H., Gunnink, R., (2008) Eur. Safeg. Res. Develop. Assoc. Bull., 38, p. 32; Knoll, G.F., (1999) Radiation Detection and Measurement, , Wiley, New York; Akimov, Y.K., (2014) Fotonnye metody registratsii izluchenii (Photon Methods of Radiation Detection), , OIYaI, Dubna; Derenzo, S., Scintillation Properties, 2014. lbl. gov; Moszinski, M., Nassalski, A., Synfeld-Kazuch, A., Szczesniaka, T., Czarnackia, W., Wolskia, D., Pauschb, G., Stein, J., (2006) Nucl. Instrum. Methods Phys. Res., Sect. A: Acceler., Spectrom., Detect. Assoc. Equip., 568 (2), p. 739; Pausch, G., Stein, J., Teofilov, N., (2005) IEEE Trans. Nucl. Sci., 52 (5), p. 1849; Belousov, M.P., Gorbunov, M.A., Dudin, S.V., (2011) Analytics and the Control, 15 (4), p. 429; Valentine, J.D., Moses, W.W., Derenzo, S.E., Wehe, D.K., Knoll, G.F., (1993) Nucl. Instrum. Methods Phys. Res., Sect. A: Acceler., Spectrom., Detect. Assoc. Equip., 325, p. 147; Grodzincka, M., Moszynski, M., Szczesniak, T., Czarnacki, W., Szawlowski, M., Swiderski, L., Kazmierczak, L., Grodzicki, K., (2013) Nucl. Instrum. Methods Phys. Res., Sect. A: Acceler., Spectrom., Detect. Assoc. Equip., 707 (1), p. 73; Bai, J.H., Whang, J.H., (2011) Progress in Nuclear Science and Technology, 1, p. 308; Valentine, J.D., Wehe, D.K., Knoll, G.F., Moss, K.E., (1993) IEEE Trans. Nucl. Sci., 40 (4), p. 1267; Bollinger, L., Thomas, G., (1961) Rev. Sci. Instrum., 32 (9), p. 1044; http://www.crystals.saint-gobain.com/uploadedFiles, /SG-Crystals /Documents/CsI(Tl)%20and%20(Na)% 20data%20sheet.pdf; Ignat’ev, O.V., Belousov, M.P., (2016) Metodika otsenki postoyannykh vremeni vysvechivaniya stsintillyatorov CsI:Tl. SMK-VDSP-OUK-8.2-10-2016 (Method of Estimation of Time Constants of Highlighting of CsI:Ti Scintillator: SMK-VDSP-OUK-8.2-10-2016), , Fiz.-Tekhnol. Inst. Ural. Fiz. Univ., Yekaterinburg; Seminozhenko, V.P., Grinyov, B.V., Nekrasov, V.V., Borodenko, Y.A., (2005) Nucl. Instrum. Methods Phys. Res., Sect. A: Acceler., Spectrom., Detect. Assoc. Equip., 537 (1-2), p. 383; Ikagawa, T., Kataoka, J., Yatsu, Y., Saito, T., Kuramoto, Y., Kawai, N., Kokubun, M., Kawabata, N., (2005) Nucl. Instrum. Methods Phys. Res., Sect. A: Acceler., Spectrom., Detect. Assoc. Equip., 538 (1-3), p. 640; Fiorini, C., Longoni, A., Perotti, F., (2000) Nucl. Instrum. Methods Phys. Res., Sect. A: Acceler., Spectrom., Detect. Assoc. Equip., 454 (1), p. 241; Grodzicka, M., Moszynski, M., Szczesniak, T., Szawlowski, M., Wolski, D., Baszak, J., (2012) IEEE Trans. Nucl. Sci., 59 (6), p. 3294; Syntfeld-Kazuch, A., Sibczynski, P., Moszynski, M., Gektin, A.V., Czarnacki, W., Grodzicka, M., Iwanowska, J., Swiderski, L., (2010) Rad. Measur., 45 (3-6), p. 377; Zhu, Y.F., Lin, S.T., Singh, V., Chang, W.C., Deniz, M., Lai, W.P., Li, H.B., Zhou, Z.Y., (2006) Nucl. Instrum. Methods Phys. Res., Sect. A: Acceler., Spectrom., Detect. Assoc. Equip., 557 (2), p. 490; Bourret-Courchesne, E.D., Bizarri, G., Hanrahan, S.M., Gundiah, G., Yan, Z., Derenzo, S.E., (2010) Nucl. Instrum. Methods Phys. Res., Sect. A: Acceler., Spectrom., Detect. Assoc. Equip., 613, p. 95; Shah, K.S., Glodo, J., Higgins, W.M., Loef, E.V.D., Moses, W.W., Derenzo, S.E., Weber, M.J., (2005) IEEE Trans. Nucl. Sci., 52 (6), p. 3157; Drozdowski, W., Dorenbos, P., Bos, A.J.J., Bizarri, G., Owens, A., Quarati, F.G.A., (2008) IEEE Trans. Nucl. Sci., 55 (3), p. 1391; http://www.hellma-materials.com/; Glodo, J., Loef, E., Hawrami, R., Higgins, W.M., Churilov, A., Shirwadkar, U., Shah, K.S., (2011) IEEE Trans. Nucl. Sci., 58 (1), p. 333; Shirwadkar, U., Glodo, J., Van Loef, E.V., Hawrami, R., Mukhopadhyay, S., Churilov, A., Higgins, W.M., Shah, K.S., (2011) Nucl. Instrum. Methods Phys. Res., Sect. A: Acceler., Spectrom., Detect. Assoc. Equip., 652 (1), p. 268; http://www.crystals, Brillance Scintillators Performance Summary. Scintillation Products Technical Note, 2009. saint-gobain.com /uploadedFiles /SG-Crystals/Documents/Technical/SGC%20BrilLanCe%20Scintillators% 20Performance%20Summary.pdf/; Drozdowski, W., Brylew, K., Wojtowicz, A.J., Kisielewski, J., Swirkowicz, M., Lukasiewicz, T., de Haas, J.T.M., Dorenbos, P., (2014) Optical Materials Express, 4 (6), p. 1207; Drozdowski, W., Dorenbos, P., Haas, J.T.M., Drozdowska, R., Owens, A., Kamada, K., Tsutsumi, K., Yoshikawa, A., (2008) IEEE Trans. Nucl. Sci., 55 (4), p. 2420; Guillot-Noël, O., Spijker, J.C., Haas, J.T.M., Dorenbos, P., Eijk, C.W.E., Krämer, K.W.H., Güdel, U., (1999) IEEE Trans. Nucl. Sci., 46 (5), p. 1274; Dorenbos, P., Spijker, J.C., Frijns, O.W.W., Eijk, C.W.E., Kramer, K., Güdel, H.U., Ellens, A., (1997) Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Inter. Mater. Atoms, 132 (4), p. 728; Alekhin, M.S., Haas, J.T.M., Kramer, K.W., Dorenbos, P., (2011) IEEE Trans. Nucl. Sci., 58 (5-2), p. 2519; Loef, E.V., Wilson, C.M., Cherepy, N.J., Payne, S.A., Choong, W.-S., Moses, W.W., Shah, K.S., (2009) IEEE Trans. Nucl. Sci., 56 (3), p. 869; Cherepy, N.J., Payne, S.A., Asztalos, S.J., Hull, G., Kuntz, J.D., Niedermayr, T., Pimputkar, S., Hawrami, R., (2009) IEEE Trans. Nucl. Sci., 56 (3), p. 873; http://www.crytur.cz/pages/33/crytur-materials; Kapusta, M., Balcerzyk, M., Moszynski, M., Pawelke, J., (1999) Nucl. Instrum. Methods Phys. Res., Sect. A: Acceler., Spectrom., Detect. Assoc. Equip., 421 (3), p. 610; Mengesha, W., Taulbee, T.D., Rooney, B.D., Valentine, J.D., (1998) IEEE Trans. Nucl. Sci., 45 (3), p. 456; Belousov, M.P., Gorbunov, M.A., Dudin, S.V., Ignatyev, O.V., Morozov, S.G., Pulin, A.A., (2013) Analytics and the Control, 17 (1), p. 21; Elad, E., (1972) IEEE Trans. Nucl. Sci., 19 (1), p. 403; Fiorini, C., (2005) IEEE Trans. Nucl. Sci., 52 (5), p. 1603; http://www.ortec-online.com/Products-Solutions/Mobile-Detection-Systems-Detectors.aspx; http://www.canberra.com/products/detectors/scintillation-detectors.asp/; http://www.atomtex.ru/ru/products/intellektualnyebloki-detektirovaniya/gamma-izlucheniya/; http://aspect.dubna.ru/new/page.php?page=498; Moszynski, M., Plettner, C., Nassalski, A., Szczesniak, T., Swiderski, L., Syntfeld-Kazuch, A., Czarnacki, W., Soltau, H., (2009) IEEE Trans. Nucl. Sci., 56 (3), p. 1006; Moszynski, M., Szawlowsky, M., Kapusta, M., Balcerzyk, M., (2003) Nucl. Instrum. Methods Phys. Res., Sect. A: Acceler., Spectrom., Detect. Assoc. Equip., 497 (1), p. 226; Jordanov, V.T., Kaster, M., (2006) US Patent 7,005, 646, p. B1. , http://www.google.ch/patents/US7005646; Licciulli, F., Indiveri, I., Marzocca, C., (2013) IEEE Trans. Nucl. Sci., 60 (2), p. 606; Akimov, Y.K., Ignatyev, O.V., Kalinin, A.I., Kushniruk, V.F., (1989) Poluprovodnikovye detektory v eksperimental’noi fizike (Semiconductor Detectors in Experimental Physics), , Energoatomizdat, Moscow
Correspondence Address Ignatyev, O.V.; Institute of Physics and Technology, Ural Federal University Named after the First President of Russia B.N. YeltsinRussian Federation; email: o.v.ignatyev@urfu.ru
Publisher Maik Nauka Publishing / Springer SBM
Language of Original Document English
Abbreviated Source Title Instrum. Exp. Tech.
Source Scopus