Precursor synthesis and properties of nanodispersed tungsten carbide and nanocomposites WC:nC / Krasil'nikov V.N., Polyakov Е.V., Khlebnikov N.А., Tarakina N.V., Kuznetsov М.V. // Ceramics International. - 2017. - V. 43, l. 5. - P. 4131-4138.

ISSN:
02728842
Type:
Article
Abstract:
Nanoscale tungsten Please validate the address of the corresponding author that has been added here. carbide (WC) and WC:nC nanocomposites have been synthesized by the precursor method. The precursor, obtained in the form of a glassy mass by thermal treatment of a mixture of (NH4)10W12O41∙7H2O and glycerol, was heated in inert gaseous atmosphere up to 1050–1100 °C. The concentration of chemically active carbon in the precursor and nanocomposites depends on the W/C ratio in the initial mixture. At W/C=1/3 pure tungsten carbide is formed; at W/C>1/3 composites of WC and free carbon (WC:nC) are formed. Heating of the precursor with W/C=1/6 up to 1100 °C in helium atmosphere results in the formation of carbon-encapsulated tungsten carbide nanoparticles. An increase in the precursor-heating rate leads to the formation of chain-like structures. Each chain consists of hexagonal WC grains with unit cell parameters a=2.93 Å and c=2.83 Å. Free carbon in WC:nC composites forms agglomerates of carbon “nano-onions” of spherical or multi-layered tubular shapes. © 2017 Elsevier Ltd and Techna Group S.r.l.
Author keywords:
Carbon; Composites; Tungsten carbides
Index keywords:
Carbon; Composite materials; Mixtures; Nanocomposites; Tungsten; Carbide nanoparticles; Carbon-encapsulated; Chainlike structure; Gaseous atmosphere; Helium atmosphere; Precursor method; Precursor syn
DOI:
10.1016/j.ceramint.2016.12.026
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85008450479&doi=10.1016%2fj.ceramint.2016.12.026&partnerID=40&md5=e79d8510d3f6ba120b89f926d25ac2a4
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85008450479&doi=10.1016%2fj.ceramint.2016.12.026&partnerID=40&md5=e79d8510d3f6ba120b89f926d25ac2a4
Affiliations Institute of Solid State Chemistry, UB RAS, 91 Pervomaiskaya st., Ekaterinburg, Russian Federation; Ural Federal University, 19 Mira st., Ekaterinburg, Russian Federation; Queen Mary University of London, Mile End Road, London, United Kingdom
Author Keywords Carbon; Composites; Tungsten carbides
References Liu, W., Soneda, Y., Haton, H., A novel carbothermal method for the preparation of nano-sized WC on high surface area carbon (2006) Chem. Lett., 35, pp. 1148-1149; Fang, Z.Z., Wang, X., Ryu, T., Hwang, K.S., Sohn, H.Y., Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide – A review (2009) Int. J. Refract. Met. Hard Mater., 27, pp. 288-299; Liu, C., Zhou, D., Zhou, J., Xie, Z., Xia, Y., Synthesis and characterization of tungsten carbide and application to electrocatalytic hydrogen evolution (2016) RSC Adv., 6, pp. 76307-76311; Ryu, T., Sohn, H.Y., Hwang, K.S., Fang, Z.Z., Tungsten carbide nanopowder by plasma-assisted chemical vapour synthesis from WCl6-CH4-H2 mixtures (2008) J. Mater. Sci., 43, pp. 5185-5192; Rosenbaum, M., Zhao, F., Quaas, M., Wulff, H., Schorder, U., Scholz, F., Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells (2007) Appl. Catal. B, 74, pp. 262-270; Eriksson, M., Radwan, M., Shen, Z., Spark plasma sintering of WC, cemented carbide and functional graded materials (2009) Int. J. Refract. Met. Hard Mater., 36, pp. 31-37; Harnisch, F., Sievers, G., Schroder, U., Tungsten carbide as electrocatalyst for the hydrogen evolution reaction in pH neutral electrolyte solutions (2009) Appl. Catal. B, 89, pp. 455-458; Aravinth, S., Sankar, B., Kamaraj, M., Chakravarthy, S.R., Sarathi, R., Synthesis and characterization of hexagonal nano tungsten carbide powder using multi walled carbon nanotubes (2012) Int. J. Refract. Met. Hard Mater., 33, pp. 53-57; Poh, C.K., Lim, S.H., Tian, Z., Lai, L., Feng, Y.P., Shen, Z., Lin, J., Pt-WxC nano-composites as an efficient electrochemical catalyst for oxygen reduction reaction (2013) Nano Energy, 2, pp. 28-39; Mateyshina, Y., Ulihin, A., Samarov, A., Barnakov, C., Uvarov, N., Nanoporous carbon-based electrode materials for supercapacitors (2013) Solid State Ion., 251, pp. 59-61; Singla, G., Singh, K., Pandey, O.P., Structural and thermal analysis of in situ synthesized C–WC nanocomposites (2014) Ceram. Int., 40, pp. 5157-5164; Tomas-Garcia, A.L., Li, Q., Jensen, J.O., Bjerrum, N.J., High surface area tungsten carbides: synthesis, characterization and catalytic activity towards the hydrogen evolution reaction in phosphoric acid at elevated temperatures (2014) Int. J. Electrochem. Sci., 9, pp. 1016-1032; Singla, G., Singh, K., Pandey, O.P., Synthesis of carbon coated tungsten carbide nano powder using hexane as carbon source and its structural, thermal and electrocatalytic properties (2015) Int. J. Hydrog. Energy, 40, pp. 5628-5637; Xiong, L., Zheng, L., Liu, C., Jin, L., Liu, Q., Xu, J., Tungsten carbide microspheres with high surface area as platinum catalyst supports for enhanced electrocatalytic activity (2015) J. Electrochem. Soc., 162, pp. F468-F473; Jiang, L., Fu, H., Wang, L., Mu, G., Jiang, B., Zhou, W., Wang, R., Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation (2014) Mater. Res. Bull., 49, pp. 480-486; Polyakov, Е.V., Maksimova, L.G., Krasilnikov, V.N., Zhilyaev, V.А., Timoshchuk, Т.А., Ermakova, О.N., Shveikin, G.P., Nikolaenko, I.V., Thermally stimulated transformation of micellar structure of tungsten glycolate into nanodispersed tungsten carbide (2010) Dokl. AN, 434, pp. 200-203. , (in Russian); Polyakov, Е.V., Krasilnikov, V.N., Tyutyunnik, А.P., Khlebnikov, N.А., Shveikin, G.P., Precursor synthesis of nanodispersed tungsten carbide WC and nanocomposites WC:nC (2014) Dokl. AN, 457 (2), pp. 189-192. , (in Russian); Khlebnikov, N.A., Polyakov, E.V., Borisov, S.V., Shepatkovskii, O.P., Krasil'nikov, V.N., Application of nanocomposite track membranes for electron microscopy samples preparation (2015) Adv. Mater. Res., 1082, pp. 51-56; Preiss, H., Meyer, B., Olschewski, C., Preparation of molybdenum and tungsten carbides from solution derived precursors (1998) J. Mater. Sci., 33, pp. 713-722; Koc, R., Kodambaka, S.R., Tungsten carbide (WC) synthesis from novel precursors (2000) J. Eur. Ceram. Soc., 20, pp. 1859-1869; Kim, J.C., Kim, B.K., Synthesis of nanosized tungsten carbide powder by the chemical vapor condensation process (2004) Scr. Mater., 50, pp. 969-972; Zawrah, M.F., Synthesis and characterization of WC-Co nanocomposites by novel method (2007) Ceram. Int., 33, pp. 155-161; Yamashita, Y., Harada, T., Makino, T., Fujiyoshi, K., Ueno, S., Koga, M., Fabrication of high purity and nano-sized tungsten carbide particles using chemical complex solution (2009) J. Jpn. Soc. Powder Powder Metall., 57, pp. 348-351; Chen, D., Wen, H., Zhai, H., Wang, H., Li, X., Zhang, R., Sun, J., Gao, L., Novel synthesis of hierarchical tungsten carbide micro-/nanocrystals from a single-source precursor (2010) J. Am. Ceram. Soc., 93, pp. 3997-4000; Reddy, K.M., Rao, T.N., Joardar, J., Stability of nanostructured W-C phases during carburization of WO3 (2011) Mater. Chem. Phys., 128, pp. 121-126; Jin, Y., Liu, D., Li, X., Yang, R., Synthesis of WC nanopowders from novel precursors (2011) Int. J. Refract. Met. Hard Mater., 29, pp. 372-375; Jin, Y., Li, X., Liu, D., Liu, C., Yang, R., Phase and microstructure evolution during the synthesis of WC nanopowders via thermal processing of the precursor (2012) Powder Technol., 217, pp. 482-485; Gavrilov, N.M., Pasti, I.A., Krstic, J., Mitric, M., Ciric-Marjanovic, G., Mentus, S., The synthesis of single phase WC nanoparticles/C composite by solid state reaction involving nitrogen-rich carbonized polyaniline (2013) Ceram. Int., 39, pp. 8761-8765; Lu, D.Y., Chen, I.J., Zhou, J., Deng, S.Z., Xu, N.S., Xu, J.B., Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires (2007) J. Raman Spectrosc., 38, pp. 176-180; Jeon, S., Yong, K., A novel composite hierarchical hollow structure: one-pot synthesis and magnetic properties of W18O49–WO2 hollow nanourchins (2009) Chem. Commun., 45, pp. 7042-7044; Maia, F.C.B., Samad, R.E., Bettini, J., Freitas, R.O., Vieira Junior, N.D., Souza-Neto, N.M., Synthesis of diamond-like phase from graphite by ultrafast laser driven dynamical compression (2015) Sci. Rep., 5, p. 11812; Gyrdasova, O.I., Krasil'nikov, V.N., Shalaeva, E.V., Baklanova, I.V., Melkozerova, M.A., Buldakova, L.Y., Yanchenko, M.Y., Optical and photocatalytic properties of quasi-one-dimensional ZnO activated by carbon (2014) Mendeleev Commun., 24, pp. 143-144; Shalaeva, E.V., Gyrdasova, O.I., Krasil'nikov, V.N., Melkozerova, M.A., Baklanova, I.V., Buldakova, L.Y., Structural, optical and photocatalytic properties of quasi-one-dimensional nanocrystalline ZnO (2015), pp. 313-336. , ZnOC:nC composites and С-doped ZnO, Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications, Series: Springer Proceedings in Physics, 156, pp; Osswald, S., Gogotsi, Y., In situ raman spectroscopy of oxidation of carbon nanomaterials (2012) Raman Spectrosc. Nanomater. Charact., pp. 291-351; Zhang, C., Lv, M., Wang, X., Li, J., Yang, X., Yang, J., Hu, H., Controllable synthesis and formation mechanism of carbon micro/nano-structural materials (2013) Chem. Phys. Lett., 586, pp. 121-126; Reich, S., Thomsen, C., Raman spectroscopy of graphite (2004) Philos. Trans. R. Soc. Lond. A, 362, pp. 2271-2288; Chu, P.K., Li, L., Characterization of amorphous and nanocrystalline carbon films (2006) Mater. Chem. Phys., 96, pp. 253-277; Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Canceado, L.G., Jorio, A., Saito, R., Studying disorder in graphite-based systems by Raman spectroscopy (2007) Phys. Chem. Chem. Phys., 9, pp. 1276-1291; Gui, Y., Yuan, J., Wang, W., Zhao, J., Tian, J., Xie, B., Facile Solvothermal Synthesis and Gas Sensitivity of Graphene/WO3 Nanocomposites (2014) Materials, 7, pp. 4587-4600; Passoni, M., Russo, V., Dellasega, D., Causa, F., Ghezzi, F., Wolverson, D., Bottani, C.E., Raman spectroscopy of nonstacked graphene flakes produced by plasma microjet deposition (2012) J. Raman Spectrosc., 43, pp. 884-888; Flores-Mena, J.E., Diaz-Reyes, J., Balderas-Lopez, J.A., Structural properties of WO3 dependent of the annealing temperature deposited by hot-filament metal oxide deposition (2012) Rev. Mex. De. Fis., 58, pp. 504-509; Wahab, H.S., Ali, S.H., Hussein, A.M.A., Synthesis and Characterization of Graphene by Raman Spectroscopy (2015) J. Mater. Sci. Appl., 1, pp. 130-135; Pimenta, M.A., Hanlon, E.B., Marucci, A., Corio, P., Brown, S.D.M., Empedocles, S.A., Bawendi, M.G., Dresselhaus, M.S., The anomalous dispersion of the disorder-induced and the second-order Raman bands in carbon nanotubes (2000) Braz. J. Phys., 30, pp. 423-427; Kimmel, Y.C., Esposito, D.V., Birkmire, R.W., Chen, J.G., Effect of surface carbon on the hydrogen evolution reactivity of tungsten carbide (WC) and Pt-modified WC electrocatalysts (2012) Int. J. Hydrog. Energy, 37, pp. 3019-3024
Correspondence Address Khlebnikov, N.А.; Institute of Solid State Chemistry, UB RAS, 91 Pervomaiskaya st., Russian Federation; email: NA.Khlebnikov@urfu.ru
Publisher Elsevier Ltd
CODEN CINND
Language of Original Document English
Abbreviated Source Title Ceram Int
Source Scopus