Dendritic growth with the six-fold symmetry: Theoretical predictions and experimental verification / Alexandrov D.V., Galenko P.K. // Journal of Physics and Chemistry of Solids. - 2017. - V. 108, l. . - P. 98-103.

ISSN:
00223697
Type:
Article
Abstract:
A free dendrite growing in a pure substance is considered with the interfacial effect of anisotropy and convective flow. A stable mode of dendritic growth with the six-fold crystal symmetry is studied using the solvability theory. We demonstrate that the obtained selection criterion for a stable mode of dendritic growth is a function of surface energy stiffness, arbitrary values of Péclet numbers and convective flow intensity. To predict the dendrite tip velocity V and its tip radius R a model of dendrite growth with the six-fold symmetry is formulated. We show that the model equations can be reduced to the growth kinetics with the low Péclet numbers, which exhibit the explicit relationships “tip velocity - undercooling”. The model predictions are compared with experimental data on ice dendrites grown from pure undercooled water on board of the International Space Station (under microgravitational conditions, μg) and on the Ground (under terrestrial conditions, 1 g). © 2017 Elsevier Ltd
Author keywords:
Convection; Dendrites; Growth models; Solvability theory
Index keywords:
Dendrites (metallography); Forecasting; Growth kinetics; Heat convection; Space stations; Arbitrary values; Experimental verification; Growth models; Interfacial effects; International Space stations;
DOI:
10.1016/j.jpcs.2017.04.016
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018243419&doi=10.1016%2fj.jpcs.2017.04.016&partnerID=40&md5=a586378dad205d91ef549c3e8e5a18a1
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018243419&doi=10.1016%2fj.jpcs.2017.04.016&partnerID=40&md5=a586378dad205d91ef549c3e8e5a18a1
Affiliations Ural Federal University, Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ekaterinburg, Russian Federation; Friedrich-Schiller-Universität Jena, Physikalisch-Astronomische Fakultät, Jena, Germany
Author Keywords Convection; Dendrites; Growth models; Solvability theory
Funding Details 16-11-10095, RSF, Russian Science Foundation
Funding Text The authors are grateful to Efim Brener for useful and fruitful discussions. D.V.A. acknowledges the support from the Russian Science Foundation [grant number 16-11-10095]. P.K.G. acknowledges the support from the project “MULTIPHAS” by the European Space Agency, German Aerospace Center and Friedrich-Schiller-Universität Jena, contract Nr. 50WM1541
References Langer, J.S., (1980) Rev. Mod. Phys., 52, pp. 1-28; Chernov, A.A., Cardona, M., Fulde, P., Queisser, H.-J., (1984), (Eds.), Modern Crystallography, Springer Series in Solid-State Science Vol. 36, Berlin; Alexandrova, I.V., Alexandrov, D.V., Aseev, D.L., Bulitcheva, S.V., (2009) Acta Phys. Pol. A, 115, pp. 791-794; Herlach, D.M., Binder, S., Galenko, P.K., Gegner, J., Holland-Moritz, D., Klein, S., Kolbe, M., Volkmann, T., (2015) Metall. Mater. Trans. A, 46A, pp. 4921-4936; Alexandrov, D.V., Nizovtseva, I.G., Malygin, A.P., Huang, H.-N., Lee, D., Phys, J., (2008) Condens. Matter, 20, p. 114105; Rubin-Zuzic, M., Morfill, G.E., Ivlev, A.V., Pompl, R., Klumov, B.A., Bunk, W., Thomas, H.M., Fouquét, A., (2006) Nat. Phys., 2, pp. 181-185; Shur, V.Y., Akhmatkhanov, A.R., Pelegova, E.V., (2016) Ferroelectrics, 500, pp. 76-89; Alexandrov, D.V., Galenko, P.K., (2013) J. Phys. A: Math. Theor., 46, p. 195101; Alexandrov, D.V., Malygin, A.P., Alexandrova, I.V., (2015), AIP Conference Proceedings, 1648, p. 850102; Alexandrov, D.V., Malygin, A.P., Alexandrova, I.V., (2015), AIP Conference Proceedings, 1648, p. 850103; Huguet, L., Alboussière, T., Bergman, M.I., Deguen, R., Labrosse, S., Lesoeur, G., (2016) Geophys. J. Int., 204, pp. 1729-1755; Herlach, D.M., Galenko, P.K., Holland-Moritz, D., Metastable Solids from Undercooled Melts (2007), Elsevier Amsterdam; Huang, S.-C., Glicksman, M.E., (1985) Acta Metall., 29, pp. 701-7015; Gliksman, M.E., Koss, M.B., Winsa, E.A., (1994) Phys. Rev. Lett., 73, pp. 573-576; Bisang, U., Bilgram, J.H., (1995) Phys. Rev. Lett., 75, pp. 3898-3901; Stadler, I., Bilgram, J.H., (2001) Europhys. Lett., 56, pp. 829-835; Kurz, W., Fisher, D.J., (1981) Acta Metall., 29, pp. 11-20; Pelcé, P., Bensimon, D., (1987) Nucl. Phys. B, 2, pp. 259-270; Pelcé, P., Dynamics of Curved Fronts (1988), Academic Press Boston; Alexandrov, D.V., Galenko, P.K., (2013) Phys. Rev. E, 87, p. 062403; Alexandrov, D.V., Galenko, P.K., (2014) Phys. Usp., 57, pp. 771-786; Alexandrov, D.V., Galenko, P.K., (2015) Phys. Chem. Chem. Phys., 17, pp. 19149-19161; Brener, E.A., Mel'nikov, V.I., (1990) J. Phys. Fr., 51, pp. 157-166; Gao, J., Han, M., Kao, A., Pericleous, K., Alexandrov, D.V., Galenko, P.K., (2016) Acta Mater., 103, pp. 184-191; Bouissou, P., Pelcé, P., (1989) Phys. Rev. A, 40, pp. 6673-6680; Lamb, H., (1945), (Sir), Hydrodynamics, Dover, New York; Kochin, N.E., Kibel, I.A., Roze, N.V., Theoretical Hydromechanics (1964), Interscience New York; Binder, S., Galenko, P.K., Herlach, D.M., (2013) Philos. Mag. Lett., 93, p. 608; Binder, S., Galenko, P.K., Herlach, D.M., (2014) J. Appl. Phys., 115, p. 053511; Gao, J., Kao, A., Bojarevics, V., Pericleous, K., Galenko, P.K., Alexandrov, D.V., (2016) J. Crystal Growth, , http://dx.doi.org/10.1016/j.jcrysgro.2016.11.069; McPhee, M.G., Maykut, G.A., Morison, J.H., (1987) J. Geophys. Res., 92, pp. 7017-7031; Ben Amar, M., Pelcé, P., (1989) Phys. Rev. A, 39, pp. 4263-4269; Bouissou, P., Perrin, B., Tabeling, P., (1989) Phys. Rev. A, 40, pp. 509-512; Tong, X., Beckermann, C., Karma, A., Lee, Q., (2001) Phys. Rev. E, 63, p. 061601; Jeong, J.-H., Goldenfeld, N., Dantzig, J.A., (2001) Phys. Rev. E, 64, p. 041602; Lipton, J., Glicksman, M.E., Kurz, W., (1984) Mater. Sci. Eng., 65, pp. 57-63; Boettinger, W.J., Coriell, S.R., Microstructure formation in rapidly solidified alloys (1986) P.R. Sahm, H. Jones, C.M. Adam (Eds.), Science and Technology of the Undercooled Melt, Springer Netherlands; Lipton, J., Kurz, W., Trivedi, R., (1987) Acta Metall., 35, pp. 957-964; Trivedi, R., Lipton, J., Kurz, W., (1987) Acta Metall., 35, pp. 965-970; Boettinger, W.J., Coriell, S.R., Trivedi, R., Application of dendritic growth theory to the interpretation of rapid solidification microstructures (1988) R. Mehrabian, P.A. Parrish (Eds.), Rapid Solidification Processing: Principles and Technologies IV, Claitor's, Baton Rouge Louisiana; Galenko, P.K., Danilov, D.A., (1997) Phys. Lett., 235, pp. 271-280; Alexandrov, D.V., Danilov, D.A., Galenko, P.K., (2016) Int. J. Heat Mass Trans., 101, pp. 789-799; Galenko, P.K., Danilov, D.A., Reuther, K., Alexandrov, D.V., Rettenmayr, M., Herlach, D.M., (2017) J. Cryst. Growth, 457, pp. 349-355; Libbrecht, K., (2004), Snowflakes, Voyageur Press Minneapolis; Furukawa, Y., Shimada, W., (1993) J. Cryst. Growth, 128, pp. 234-239; Yoshizaki, I., Ishikawa, T., Adachi, S., Yokoyama, E., Furukawa, Y., (2012) Microgravity Sci. Technol., 24, pp. 245-253; Shibkov, A.A., Zheltov, M.A., Korolev, A.A., Kazakov, A.A., Leonov, A.A., (2005) J. Cryst. Growth, 285, pp. 215-227; Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K.J., Tchobanoglous, G., MWH's Water Treatment: Principles and Design (2012), Third ed. John Wiley & Sons. Inc. Hoboken; Brener, E.A., Mel'nikov, V.I., (1991) Adv. Phys., 40, pp. 53-97; Funke, O., Phanikumar, G., Galenko, P.K., Chernova, E., Reutzel, S., Kolbe, M., Herlach, D.M., (2006) J. Cryst. Growth, 297, pp. 211-222; Horvay, G., Cahn, J., (1961) Acta Metall., 9 (7), pp. 695-705; Ananth, R., Gill, W., (1989) J. Fluid Mech., 208, pp. 575-593; McFadden, G.B., Coriell, S.R., Sekerka, R.F., (2000) J. Cryst. Growth, 208, pp. 726-745; Ivantsov, G.P., (1947) Dokl. Akad. Nauk USSR, 58, pp. 567-570
Correspondence Address Galenko, P.K.; Friedrich-Schiller-Universität Jena, Physikalisch-Astronomische FakultätGermany; email: peter.galenko@uni-jena.de
Publisher Elsevier Ltd
CODEN JPCSA
Language of Original Document English
Abbreviated Source Title J Phys Chem Solids
Source Scopus