Dynamics of the phase transition boundary in the presence of nucleation and growth of crystals / Alexandrov D.V. // Journal of Physics A: Mathematical and Theoretical. - 2017. - V. 50, l. 34.

ISSN:
17518113
Type:
Article
Abstract:
Nucleation and growth of crystals in a moving metastable layer of phase transition is analyzed theoretically. The integro-differential equations for the density distribution function and system metastability are solved analytically on the basis of a previously developed approach (Alexandrov and Malygin 2013 J. Phys. A: Math. Theor. 46 455101) in cases of the kinetic and diffusionally controlled regimes of crystal growth. The Weber-Volmer-Frenkel-Zel'dovich and Meirs nucleation kinetics are considered. It is shown that the phase transition boundary propagates with time as , where and in cases of kinetic and diffusionally controlled growth regimes. The growth rate constants α and β as well as parameter ϵ are found analytically. The phase transition boundary in the presence of particle nucleation and growth moves slower than in cases without nucleation. © 2017 IOP Publishing Ltd.
Author keywords:
crystal growth; nucleation; phase transition
Index keywords:
нет данных
DOI:
10.1088/1751-8121/aa7ab0
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026748865&doi=10.1088%2f1751-8121%2faa7ab0&partnerID=40&md5=8f991a424c28af1aa5fe7135ae9ecc13
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 345101
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026748865&doi=10.1088%2f1751-8121%2faa7ab0&partnerID=40&md5=8f991a424c28af1aa5fe7135ae9ecc13
Affiliations Department of Theoretical and Mathematical Physics, Ural Federal University, Laboratory of Multi-Scale Mathematical Modeling, Lenin ave., 51, Ekaterinburg, Russian Federation
Author Keywords crystal growth; nucleation; phase transition
Funding Details 16-08-00932, RFBR, Russian Foundation for Basic Research
Funding Text This work was supported by the Russian Foundation for Basic Research (grant no. 16-08-00932).
References Hamza, M.A., Berge, B., Mikosch, W., Rühl, E., Homogeneous nucleation of supersaturated KCl-solutions from single levitated microdroplets (2004) Phys. Chem. Chem. Phys., 6, pp. 3484-3489; Slezov, V.V., (2009) Kinetics of First-Order Phase Transitions, , (Weinheim: Wiley); Kelton, K.F., Greer, A.L., (2010) Nucleation in Condensed Matter: Applications in Materials and Biology, , (Amsterdam: Elsevier); Alexandrov, D.V., Malygin, A.P., Flow-induced morphological instability and solidification with the slurry and mushy layers in the presence of convection (2012) Int. J. Heat Mass Trans., 55, pp. 3196-3204; Radu, M., Schilling, T., Solvent hydrodynamics speed up crystal nucleation in suspensions of hard spheres (2014) Europhys. Lett., 105 (2), p. 26001; Alexandrov, D.V., Nizovtseva, I.G., Nucleation and particle growth with fluctuating rates at the intermediate stage of phase transitions in metastable systems (2014) Proc. R. Soc., 470, p. 20130647; Dubrovskii, V.G., (2014) Nucleation Theory and Growth of Nanostructures, , (Berlin: Springer); Hunt, J.R., Self-similar particle-size distributions during coagulation: Theory and experimental verification (1982) J. Fluid Mech., 122, pp. 169-185; Buyevich, Y.A., Mansurov, V.V., Kinetics of the intermediate stage of phase transition in batch crystallization (1990) J. Cryst. Growth, 104, pp. 861-867; Buyevich Yu, A., Mansurov, V.V., Natalukha, I.A., Instability and unsteady processes of the bulk continuous crystallization - I linear stability analysis (1991) Chem. Eng. Sci., 46, pp. 2573-2578; Barlow, D.A., Baird, J.K., Su, C.-H., Theory of the von Weimarn rules governing the average size of crystals precipitated from a supersaturated solution (2004) J. Cryst. Growth, 264, pp. 417-423; Shneidman, V.A., Early stages of Ostwald ripening (2013) Phys. Rev., 88; Alexandrov, D.V., Malygin, A.P., Nucleation kinetics and crystal growth with fluctuating rates at the intermediate stage of phase transitions (2014) Modelling Simul. Mater. Sci. Eng., 22 (1); Alexandrov, D.V., On the theory of transient nucleation at the intermediate stage of phase transitions (2014) Phys. Lett., 378, pp. 1501-1504; Alexandrov, D.V., On the theory of Ostwald ripening: Formation of the universal distribution (2015) J. Phys. A: Math. Theor., 48; Mansurov, V.V., The nonlinear dynamics of solidification of a binary melt with a nonequilibrium mushy region (1990) Math. Comput. Modelling, 14, pp. 819-821; Aseev, D.L., Alexandrov, D.V., Nonlinear dynamics for the solidification of binary melt with a nonequilibrium two-phase zone (2006) Dokl. Phys., 51, pp. 291-295; Aseev, D.L., Alexandrov, D.V., Directional solidification of binary melts with a non-equilibrium mushy layer (2006) Int. J. Heat Mass Trans., 49, pp. 4903-4909; Mullin, J.W., (1972) Crystallization, , (London: Butterworths); Martin, S., Kauffman, P., The evolution of under-ice melt ponds, or double diffusion at the freezing point (1974) J. Fluid Mech., 64, pp. 507-527; Avdonin, N.A., (1980) Mathematical Description of Crystallization Processes, , (Riga: Zinatne); Yu, A.B., Natalukha, I.A., Unsteady processes of combined polymerization and crystallization in continuous apparatuses (1994) Chem. Eng. Sci., 49, pp. 3241-3247; Notz, D., McPhee, M.G., Worster, M.G., Maykut, G.A., Schlünzen, K.H., Eicken, H., Impact of underwater-ice evolution on Arctic summer sea ice (2003) J. Geophys. Res., 108, p. 3223; Alexandrov, D.V., Nizovtseva, I.G., Malygin, A.P., Huang, H.-N., Lee, D., Unidirectional solidification of binary melts from a cooled boundary: Analytical solutions of a nonlinear diffusion-limited problem (2008) J. Phys.: Condens. Matter, 20 (11); Alexandrova, I.V., Alexandrov, D.V., Aseev, D.L., Bulitcheva, S.V., Mushy layer formation during solidification of binary alloys from a cooled wall: The role of boundary conditions (2009) Acta Phys. Pol., 115, pp. 791-794; Fearn, D.R., Loper, D.E., Roberts, P.H., Structure of the earth's inner core (1981) Nature, 292, pp. 232-233; Hills, R.N., Loper, D.E., Roberts, P.H., A thermodynamically consistent model of a mushy zone (1983) Q. J. Mech. Appl. Math., 36, pp. 505-540; Huppert, H.E., Worster, M.G., Dynamic solidification of a binary melt (1985) Nature, 314, pp. 703-707; Fowler, A.C., The formation of freckles in binary alloys (1985) IMA J. Appl. Math., 35, pp. 159-174; Worster, M.G., Solidification of an alloy from a cooled boundary (1986) J. Fluid Mech., 167, pp. 481-501; Alexandrov, D.V., Malygin, A.P., Self-similar solidification of an alloy from a cooled boundary (2006) Int. J. Heat Mass Trans., 49, pp. 763-769; Alexandrov, D.V., Aseev, D.L., Directional solidification with a two-phase zone: Thermodiffusion and temperature-dependent diffusivity (2006) Comput. Math. Sci., 37, pp. 1-6; Alexandrov, D.V., Aseev, D.L., Nizovtseva, I.G., Huang, H.-N., Lee, D., Nonlinear dynamics of directional solidification with a mushy layer analytic solutions of the problem (2007) Int. J. Heat Mass Trans., 50, pp. 3616-3623; Alexandrov, D.V., Ivanov, A.A., Solidification of a ternary melt from a cooled boundary, or nonlinear dynamics of mushy layers (2009) Int. J. Heat Mass Trans., 52, pp. 4807-4811; Jones, D.W.R., Worster, M.G., On the thermodynamic boundary conditions of a solidifying mushy layer with outflow (2015) J. Fluid Mech., 762, p. R1; Huguet, L., Alboussière, T., Bergman, M.I., Deguen, R., Labrosse, S., Lesoeur, G., Structure of a mushy layer under hypergravity with implications for earth's inner core (2016) Geophys. J. Int., 204, pp. 1729-1755; Alexandrov, D.V., Malygin, A.P., Transient nucleation kinetics of crystal growth at the intermediate stage of bulk phase transitions (2013) J. Phys. A: Math. Theor., 46; Alexandrov, D.V., Nucleation and crystal growth in binary systems (2014) J. Phys. A: Math. Theor., 47; Herlach, D.M., (2008) Phase Transformations in Multicomponent Melts, , (Weinheim: Wiley); Shur, V.Y., Akhmatkhanov, A.R., Pelegova, E.V., Self-organizing formation of dendrite domain structures in lithium niobate and lithium tantalate crystals (2016) Ferroelectrics, 500, pp. 76-89; Solomatov, V.S., Stevenson, D.J., Kinetics of crystal growth in a terrestrial magma ocean (1993) J. Geophys. Res., 98, pp. 5407-5418; Alexandrov, D.V., Netreba, A.V., Malygin, A.P., Time-dependent crystallization in magma chambers and lava lakes cooled from above: The role of convection and kinetics on nonlinear dynamics of binary systems (2012) Int. J. Heat Mass Trans., 55, pp. 1189-1196; Buyevich Yu, A., Ivanov, A.O., Kinetics of phase separation in colloids: II non-linear evolution of a metastable colloid (1993) Physica, 193, pp. 221-240; Ivanov, A.O., Zubarev, A.Y., Non-linear evolution of a system of elongated droplike aggregates in a metastable magnetic fluid (1998) Physica, 251, pp. 348-367; Randolph, A., Larson, M., (1988) Theory of Particulate Processes, , (New York: Academic); Fedoruk, M.V., (1977) Saddle-Point Method, , (Moscow: Nauka)
Correspondence Address Alexandrov, D.V.; Department of Theoretical and Mathematical Physics, Ural Federal University, Laboratory of Multi-Scale Mathematical Modeling, Lenin ave., 51, Russian Federation; email: dmitri.alexandrov@urfu.ru
Publisher Institute of Physics Publishing
Language of Original Document English
Abbreviated Source Title J. Phys. Math. Theor.
Source Scopus