Effect of convective transport on dendritic crystal growth from pure and alloy melts / Galenko P.K., Reuther K., Kazak O.V., Alexandrov D.V., Rettenmayr M. // Applied Physics Letters. - 2017. - V. 111, l. 3.

ISSN:
00036951
Type:
Article
Abstract:
We report on the comparative influence of convective transport due to flow in the melt on dendrites growing in one-component (pure) and two-component (alloy) melts. We perform an analysis using a sharp interface model of slow and rapid dendritic growth under the influence of convective transport. As examples, solidification of melts of Ti and binary TiAl, respectively, is investigated. The observed principal differences in the effect of convective transport in melt on the growth of one-component and binary dendrites are discussed in the frame of a scaling analysis. © 2017 Author(s).
Author keywords:
Index keywords:
Aluminum alloys; Binary alloys; Bins; Alloy melt; Convective transport; Dendritic crystal; Dendritic growth; Scaling analysis; Sharp interface model; Two-component; Titanium alloys
DOI:
10.1063/1.4985340
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85025659824&doi=10.1063%2f1.4985340&partnerID=40&md5=38c66702161ea508f9168b8ae21c1030
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 031602
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85025659824&doi=10.1063%2f1.4985340&partnerID=40&md5=38c66702161ea508f9168b8ae21c1030
Affiliations Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Jena, Germany; Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Ekaterinburg, Russian Federation
Funding Details 16-11-10095, RSF, Russian Science Foundation; Re1261/8-2, DFG, Deutsche Forschungsgemeinschaft
Funding Text This work was supported by the Russian Science Foundation, Grant No. 16-11-10095, German Space Center Space Management under contract number 50WM1541 and the Deutsche Forschungsgemeinschaft (DFG) under Grant No. Re1261/8-2
References Glicksman, M.E., Coriell, S.R., McFadden, G.B., (1986) Annu. Rev. Fluid Mech., 18, p. 307; Eckler, K., Herlach, D.M., (1994) Mater. Sci. Eng. A, 178, p. 159; Biloni, H., Boettinger, W.J., Solidification (1996) Physical Metallurgy, 1, p. 669. , 4th ed., edited by R. W. Cahn and P. Haasen (Elsevier, Amsterdam); Binder, S., Galenko, P.K., Herlach, D.M., (2013) Philos. Mag. Lett., 93, p. 608; Mathiesen, R.H., Arnberg, L., Ramsokar, K., Weitkamp, T., Rau, C., Snigirev, A., (2002) Metall. Mater. Trans. B, 33, p. 613; Shevchenko, N., Eckert, S., Boden, S., Gerbeth, G., (2012) IOP Conf. Ser.: Mater. Sci. Eng., 33; Gao, J., Han, M., Kao, A., Pericleous, K., Alexandrov, D.V., Galenko, P.K., (2016) Acta Mater., 103, p. 184; Binder, S., Galenko, P.K., Herlach, D.M., (2014) J. Appl. Phys., 115; Hyers, R.W., Trapaga, G., Abedian, B., (2003) Metall. Mater. Trans. B, 34, p. 29; Reutzel, S., Hartmann, H., Galenko, P.K., Schneider, S., Herlach, D.M., (2007) Appl. Phys. Lett., 91; Glicksman, M.E., Koss, M.B., Winsa, E.A., (1994) Phys. Rev. Lett., 73, p. 573; Herlach, D.M., Galenko, P.K., (2007) Mater. Sci, Eng. A, 449-451, p. 34; Galenko, P.K., Danilov, D.A., Reuther, K., Alexandrov, D.V., Rettenmayr, M., Herlach, D.M., (2017) J. Cryst. Growth, 457, p. 349; Hartmann, H., Galenko, P.K., Holland-Moritz, D., Kolbe, M., Herlach, D.M., Shuleshova, O., (2008) J. Appl. Phys., 103; Rozas, R.E., Horbach, J., Properties of titanium modified Model EAM M99, , (unpublished); Meyer, A., (2015) EPJ Web Conf., 83; Horbach, J., Rozas, R.E., Unruh, T., Meyer, A., (2009) Phys. Rev. B, 80; Krivilev, M.D., (2016), private communication; Kurz, W., Fisher, R., (1989) Fundamentals of Solidification, , (Trans Tech Publications, Aedermannsdorf); Herlach, D., Galenko, P., Holland-Moritz, D., (2007) Metastable Solids from Undercooled Melts, , (Elsevier, Amsterdam); Galenko, P.K., Herlach, D.M., Funke, O., Phanikumar, G., Phase-field modeling of dendritic solidification: Verification for the model prediction with latest experimental data (2004) Solidification and Crystallization, p. 52. , edited by D. M. Herlach (Wiley-VCH, Mannheim); Lamb, H., (1945) Hydrodynamics, , (Dover Publications, New York); Levich, V.G., (1962) Physicochemical Hydrodynamics, , (Prentice-Hall, Englewood Cliffs, NJ); Kochin, N.E., Kibel, I.A., Roze, N.V., (1964) Theoretical Hydromechanics, , (Interscience Publishers, New York); The role of convection and fluid flow in solidification and crystal growth (1983) Physicochemical Hydrodynamics, 24. , edited by D. T. J. Hurle and E. Jakeman ((Pergamon); Tong, X., Beckermann, C., Karma, A., Li, Q., (2001) Phys. Rev. e, 63; Jeong, J.-H., Goldenfeld, N., Dantzig, J.A., (2001) Phys. Rev. e, 64; Subhedar, A., Steinbach, I., Varnik, F., (2015) Phys. Rev. e, 92
Publisher American Institute of Physics Inc.
CODEN APPLA
Language of Original Document English
Abbreviated Source Title Appl Phys Lett
Source Scopus