Thermodynamic stability, oxygen content, defect structure and related properties of YBaCo4 − xZnxO7 + δ (x = 0–3) oxides / Tsvetkov D.S., Tsvetkova N.S., Ivanov I.L., Zuev A.Y. // Solid State Ionics. - 2017. - V. 309, l. . - P. 92-99.

ISSN:
01672738
Type:
Article
Abstract:
Oxygen nonstoichiometry and thermodynamic stability of Zn–doped YBaCo4 − xZnxO7 + δ oxides were investigated by solid state coulometric titration and EMF-method, respectively. As a result, significant zinc doping was shown to increase the stability of YBaCo4 − xZnxO7 + δ oxides in oxidizing atmosphere. However enrichment of YBaCo4 − xZnxO7 + δ oxides by zinc results in increasing their reducibility since the low pO2 stability limit shifts towards higher pO2 values upon doping. Substitution of zinc for cobalt in YBaCo4 − xZnxO7 + δ oxides was also found to narrow their oxygen homogeneity region. Total conductivity and Seebeck coefficient of YBaCo4 − xZnxO7 + δ oxides were measured simultaneously using 4-probe dc-method. The defect structure of YBaCo4 − xZnxO7 + δ oxides was successfully analysed using Kröger-Vink approach. The data on oxygen nonstoichiometry, total conductivity and Seebeck coefficient of the thermodynamically stable YBaCo4 − xZnxO7 + δ (x = 0, 1) oxides were found to be quite consistent with the proposed model of their defect structure. © 2017 Elsevier B.V.
Author keywords:
114; Defect structure; Oxygen content; Thermodynamic stability; YBaCo4O7
Index keywords:
Cobalt alloys; Defect structures; Defects; Oxygen; Seebeck coefficient; Stability; Ternary alloys; Thermodynamic stability; Thermodynamics; Titration; Yttrium alloys; Zinc; Homogeneity regions; Oxidiz
DOI:
10.1016/j.ssi.2017.07.014
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85025176180&doi=10.1016%2fj.ssi.2017.07.014&partnerID=40&md5=d3c4ad2d50bc22bbd96f72e067b79712
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85025176180&doi=10.1016%2fj.ssi.2017.07.014&partnerID=40&md5=d3c4ad2d50bc22bbd96f72e067b79712
Affiliations Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federation
Author Keywords 114; Defect structure; Oxygen content; Thermodynamic stability; YBaCo4O7
References Rupasov, D., Chroneos, A., Parfitt, D., Kilner, J.A., Grimes, R.W., Istomin, S.Y., Antipov, E.V., (2009) Phys. Rev. B, 79, p. 172102; Seymour, I.D., Tarancón, A., Chroneos, A., Parfitt, D., Grimes, R.W., (2012) Solid State Ionics, 216, pp. 41-43; Tsipis, E.V., Kharton, V.V., Frade, J.R., (2006) Solid State Ionics, 177, pp. 1823-1826; Karppinen, M., Yamauchi, H., Otani, S., Fujita, T., Motohashi, T., Huang, Y.-H., Valkeapää, M., Fjellvåg, H., (2006) Chem. Mater., 18, pp. 490-494; Chmaissem, O., Zheng, H., Huq, A., Stephens, P.W., Mitchell, J.F., (2008) J. Solid State Chem., 181, pp. 664-672; Zhu, B., Hao, H.S., Zhang, Y., Jia, J., Hu, X., Rare, J., (2010) Earth, 28, pp. 84-87; Maignan, A., Hébert, S., Caignaert, V., Pralong, V., Pelloquin, D., (2008) Solid State Commun., 147, pp. 470-473; Avci, S., Chmaissem, O., Zheng, H., Huq, A., Manuel, P., Mitchell, J.F., (2013) Chem. Mater., 25, pp. 4188-4196; Parkkima, O., Karppinen, M., (2014) Eur. J. Inorg. Chem., 25, pp. 4056-4067; Hao, H.S., Cui, J.H., Chen, C.Q., Pan, L.J., Hu, J., Hu, X., (2006) Solid State Ionics, 177, pp. 631-637; Parkkima, H., Yamauchi, H., Karppinen, M., (2013) Chem. Mater., 25, pp. 599-604; Räsänen, S., Parkkima, O., Rautama, E.-L., Yamauchi, H., Karppinen, M., (2012) Solid State Ionics, 208, pp. 31-35; Kim, J.-H., Manthiram, A., (2010) Chem. Mater., 22, pp. 822-831; Räsänen, S., Motohashi, T., Yamauchi, H., Karppinen, M., (2010) J. Solid State Chem., 183, pp. 692-695; Tsvetkov, D.S., Pralong, V., Tsvetkova, N.S., Zuev, A.Y., (2015) Solid State Ionics, 278, pp. 1-4; Tsvetkov, D.S., Sereda, V.V., Zuev, A.Y., (2010) Solid State Ionics, 180, pp. 1620-1625; Zuev, A.Y., Tsvetkov, D.S., Conventional methods for measurements of chemo-mechanical coupling (2017) Electro-chemo-mechanics of Solids, , S.R. Bishop N. Perry D. Marrocchelli B. Sheldon Springer; Petrov, A.N., Zuev, A.Y., Vylkov, A.I., (2005) Russ. J. Phys. Chem., 79, pp. 173-178; Valldor, M., Andersson, M., (2002) Solid State Sci., 4, pp. 923-931; Valldor, M., (2004) Solid State Sci., 6, pp. 251-266; Rabbow, C., Muller-Buschbaum, H., (1994) Z. Anorg. Allg. Chem., 620, pp. 527-530; Kroger, F.A., Vink, H.J., (1956) Solid State Phys., 3, pp. 307-435; Heikes, R.R., Ure, R.W., Thermoelectricity: Science and Engineering (1961), Interscience Pubs N.Y; Sehlin, S.R., Anderson, H.U., Sparlin, D.M., (1995) Solid State Ionics, 78, pp. 235-243
Correspondence Address Tsvetkov, D.S.Lenin Av. 51, Russian Federation; email: Dmitry.Tsvetkov@urfu.ru
Publisher Elsevier B.V.
CODEN SSIOD
Language of Original Document English
Abbreviated Source Title Solid State Ionics
Source Scopus