References |
Wu, J., Xiao, D., Zhu, J., Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries (2015) Chem. Rev., 115, pp. 2559-2595; Ogihara, H., Randall, C.A., McKinstry, S.T., High-energy density capacitors utilizing 0.7 BaTiO3–0.3 BiScO3 ceramics (2009) J. Am. Ceram. Soc., 92, pp. 1719-1724; Zhang, Q., Li, Z.R., Li, F., Xu, Z., Structural and dielectric properties of Bi (Mg1/2Ti1/2)O3–BaTiO3 lead-free ceramics (2011) J. Am. Ceram. Soc., 94, pp. 4335-4339; Choi, D.H., Baker, A., Lanagan, M., Trolier-McKinstry, S., Randall, C.A., Structural and dielectric properties in (1−x)BaTiO3–xBi(Mg1/2Ti1/2)O3 ceramics (0.1 ≤ x ≤ 0.5) and potential for high-voltage multilayer capacitors (2013) J. Am. Ceram. Soc., 96, pp. 2197-2202; Hao, H., Liu, H., Zhang, S.J., Xiong, B., Shu, X., Yao, Z.H., Cao, M., Fabrication, structure and property of BaTiO3-based dielectric ceramics with a multilayer core–shell structure (2012) Scr. Mater., 67, pp. 451-454; Huang, C.C., Cann, D.P., Phase transitions and dielectric properties in Bi(Zn1/2Ti1/2)O3−BaTiO3 perovskite solid solutions (2008) J. Appl. Phys., 104, p. 024117; Wang, X.P., Wu, J.G., Xiao, D., Zhu, J., Cheng, X., Zheng, T., Zhang, B., Wang, X., Giant piezoelectricity in potassium–sodium niobate lead-free ceramics (2014) J. Am. Chem. Soc., 136, pp. 2905-2910; Zhang, Y., Huang, J.J., Ma, T., Wang, X., Deng, C., Dai, X., Sintering temperature dependence of energy-storage properties in (Ba,Sr)TiO3 glass–ceramics (2011) J. Am. Ceram. Soc., 94, pp. 1805-1810; Yao, Z.H., Song, Z., Hao, H., Yu, Z., Cao, M., Zhang, S.J., Lanagan, M.T., Liu, H., Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances, Adv. Mater. published online, doi; Nishino, A., Capacitors: operating principles, current market and technical trends (1996) J. Power Sources, 60, pp. 137-147; Zeb, A., Bai, Y., Button, T., Milne, S.J., Temperature-stable relative permittivity from −70 °C to 500 °C in (Ba0.8Ca0.2)TiO3–Bi(Mg0.5Ti0.5)O3–NaNbO3 ceramics (2014) J. Am. Ceram. Soc., 97, pp. 2479-2483; Yao, G., Wang, X., Sun, T., Li, L., Effects of CaZrO3 on X8R nonreducible BaTiO3-based dielectric ceramics (2011) J. Am. Ceram. Soc., 94, pp. 3856-3862; Xu, G.Y., Zhong, Z., Bing, Y., Ye, Z.G., Shirane, G., Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric (2006) Nat. Mater., 5, pp. 134-140; Wang, J., Liu, Y., Li, Q., Lau, K., Withers, R.L., Li, Z.R., Xu, Z., Dipolar-glass-like relaxor ferroelectric behaviour in the 0.5BaTiO3-0.5Bi(Mg1/2Ti1/2)O3 electroceramic (2013) Appl. Phys. Lett., 103, p. 042910; Ogihara, H., Randall, C.A., Trolier-McKinstry, S., Weakly coupled relaxor behavior of BaTiO3–BiScO3 ceramics (2009) J. Am. Ceram. Soc., 92, pp. 110-118; Xiong, B., Hao, H., Zhang, S.J., Liu, H.X., Cao, M.H., Structure, dielectric properties and temperature stability of BaTiO3–Bi(Mg1/2Ti1/2)O3 perovskite solid solutions (2011) J. Am. Ceram. Soc., 94, pp. 3412-3417; Liu, Z.Y., Fan, H.Q., Li, M.M., High temperature stable dielectric properties of (K0.5Na0.5)0.985Bi0.015Nb0.99Cu0.01O3 ceramics with core–shell microstructures (2015) J. Mater. Chem. C, 3, pp. 5851-5858; Wada, S., Yamato, K., Pulpan, P., Kumada, N., Lee, B.Y., Lijima, T., Moriyoshi, C., Kuroiwa, Y., Piezoelectric properties of high Curie temperature barium titanate–bismuth perovskite-type oxide system ceramics (2010) J. Appl. Phys., 108, p. 094114; Hu, Q., Wang, T., Zhao, L.Y., Jin, L., Xu, Z., Wei, X.Y., Dielectric and energy storage properties of BaTiO3–Bi(Mg1/2Ti1/2)O3 ceramic: influence of glass addition and biasing electric field (2017) Ceram. Int., 43, pp. 35-39; Hu, Q., Jin, L., Wang, T., Li, C., Xing, Z., Wei, X.Y., Dielectric and temperature stable energy storage properties of 0.88BaTiO3–0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics (2015) J. Alloy. Compd., 640, pp. 416-420; Viehland, D., Jang, S., Cross, L.E., Wutting, M., Freezing of the polarization fluctuations in lead magnesium niobate relaxors (1990) J. Appl. Phys., 68, p. 2916; Glazounov, A.E., Tagantsev, A.K., Direct evidence for Vögel–Fulcher freezing in relaxor ferroelectrics (1998) Appl. Phys. Lett., 73, pp. 856-858; Tagantsev, A.K., Vogel-Fulcher relationship for the dielectric permittivity of relaxor ferroelectrics (1994) Phys. Rev. Lett., 72, pp. 1100-1103; Colla, E., Koroleva, E., Okuneva, N.M., Vakhrushev, S., Long-time relaxation of the dielectric response in lead magnoniobate (1995) Phys. Rev. Lett., 74, pp. 1681-1684; Vakhrushev, S., Kvyatkovsky, B.E., Naberezhnov, A.A., Okuneva, N.M., Toperverg, B.P., Glassy phenomena in disordered perovskite-like crystals (1989) Ferroelectrics, 90, pp. 173-176; Blinc, R., Dolinsek, J., Gregorovic, A., Zalar, B., Filipic, C., Kutnjak, Z., Levstik, A., Pirc, R., Local polarization distribution and Edwards-Anderson order parameter of relaxor ferroelectrics (1999) Phys. Rev. Lett., 83, pp. 424-427; Jonscher, A.K., Low-loss dielectrics (1999) J. Mater. Sci., 34, pp. 3071-3082; Jonscher, A.K., Dielectric Relaxation in Solids (1983), Chelsea Dielectric Press London; Bokov, A.A., Ye, Z.G., Freezing of dipole dynamics in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 as evidenced by dielectric spectroscopy (2000) J. Phys.: Condens. Matter, 12, pp. L541-L548; Bokov, A.A., Maglione, M., Ye, Z.G., Quasi-ferroelectric state in Ba(Ti1−xZrx)O3 relaxor: dielectric spectroscopy evidence (2007) J. Phys.: Condens. Matter, 19, pp. 1-10; Wu, J., Wang, J., BiFeO3 thin films of (111)-orientation deposited on SrRuO3 buffered Pt/TiO2/SiO2/Si(1 0 0) substrates (2010) Acta Mater., 58, pp. 1688-1697; Wu, J., Wang, J., Ferroelectric and impedance behavior of La- and Ti-codoped BiFeO3 thin films (2010) J. Am. Ceram. Soc., 93, pp. 2795-2803; Hirose, N., West, A.R., Impedance spectroscopy of undoped BaTiO3 ceramics (1996) J. Am. Ceram. Soc., 79, pp. 1633-1641; Morrison, F.D., Sinclair, D.C., West, A.R., Electrical and structural characteristics of lanthanum-doped barium titanate ceramics (1999) J. Appl. Phys., 86, pp. 6355-6366; Liu, J., Duan, C.C., Yin, W.G., Mei, W.N., Smith, R.W., Hardy, J.R., Large dielectric constant and Maxwell-Wagner relaxation in Bi2/3Cu3Ti4O12 (2004) Phys. Rev. B., 70, p. 144106; MacChesney, J.B., Gallagher, P.K., Dimarcello, F.V., Stabilized barium titanate ceramics for capacitor dielectrics (1963) J. Am. Ceram. Soc., 46, pp. 197-202; Pinczuk, A., Taylor, W.T., Burstein, E., Lefkowitz, I., The Raman spectrum of BaTiO3 (1967) Solid State Commun., 5, pp. 429-433; DiDomenico, M., Jr, Wemple, S.H., Porto, S.P.S., Bauman, R.P., Raman spectrum of single-domain BaTiO3 (1968) Phys. Rev., 174, pp. 522-530; Burns, G., Scott, B.A., Raman scattering in the ferroelectric system Pb1−xBaxTiO3 (1971) Solid State Commun., 9, p. 813; Ren, P., Wang, X., Fan, H., Ren, Y., Zhao, G.Y., Structure, relaxation behaviors and nonlinear dielectric properties of BaTiO3–Bi(Ti0.5Mg0.5)O3 ceramics (2015) Ceram. Int., 41, pp. 7693-7697; Triamnak, N., Yimnirun, R., Pokorny, J., Cann, D.P., Relaxor characteristics of the phase transformation in (1−x)BaTiO3–xBi(Zn1/2Ti1/2)O3 perovskite ceramics (2013) J. Am. Ceram. Soc., 96, pp. 3176-3182; Zheng, H., Csete de Györgyfalva, G.D.C., Quimby, R., Bagshaw, H., Ubic, R., Reaney, I.M., Yarwood, J., Raman spectroscopy of B-site order–disorder in CaTiO3-based microwave ceramics (2003) J. Eur. Ceram. Soc., 23, pp. 2653-2659 |