Relaxation behavior and electrical inhomogeneity in 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 ceramic / Hu Q., Jin L., Zelenovskiy P.S., Shur V.Y., Zhuang Y., Xu Z., Wei X. // Ceramics International. - 2017. - V. 43, l. 15. - P. 12828-12834.

ISSN:
02728842
Type:
Article
Abstract:
In this paper, the relaxation behavior and electrical inhomogeneity of the 0.9BaTiO3- 0.1Bi(Mg1/2Ti1/2)O3 ceramic which exhibits outstanding temperature stable dielectric and energy storage properties are investigated. The relaxation process is well described by the empirical Vogel-Fulcher law, also indicating a freezing process in the system simultaneously. Such a freezing process is also observed in the “Vogel-Fulcher” shaped temperature dependence of the universal relaxation exponent n. Furthermore, the electrical inhomogeneity, showing up as two dielectric anomalies in the temperature dependence of the dielectric constant, is ascribed to the compositional inhomogeneity between grains and grain boundaries. The grain and grain boundary contributions to the total polarization are separated by analyzing the complex impedance spectroscopy with equivalent circuit model. Finally, the compositional inhomogeneity is manifested by the confocal Raman microscopy, indicating that the grain is rich in BaTiO3, whereas the grain boundary has Bi(Mg1/2Ti1/2)O3 concentrations. © 2017 Elsevier Ltd and Techna Group S.r.l.
Author keywords:
Electrical inhomogeneity; Freezing process; Relaxation
Index keywords:
Barium compounds; Ceramic materials; Equivalent circuits; Freezing; Grain boundaries; Temperature distribution; Complex impedance spectroscopy; Compositional inhomogeneity; Confocal Raman microscopy;
DOI:
10.1016/j.ceramint.2017.06.173
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021818141&doi=10.1016%2fj.ceramint.2017.06.173&partnerID=40&md5=ff3f5a034d4dfa3b320397ac94e08ad3
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021818141&doi=10.1016%2fj.ceramint.2017.06.173&partnerID=40&md5=ff3f5a034d4dfa3b320397ac94e08ad3
Affiliations School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federation; Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, China
Author Keywords Electrical inhomogeneity; Freezing process; Relaxation
References Wu, J., Xiao, D., Zhu, J., Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries (2015) Chem. Rev., 115, pp. 2559-2595; Ogihara, H., Randall, C.A., McKinstry, S.T., High-energy density capacitors utilizing 0.7 BaTiO3–0.3 BiScO3 ceramics (2009) J. Am. Ceram. Soc., 92, pp. 1719-1724; Zhang, Q., Li, Z.R., Li, F., Xu, Z., Structural and dielectric properties of Bi (Mg1/2Ti1/2)O3–BaTiO3 lead-free ceramics (2011) J. Am. Ceram. Soc., 94, pp. 4335-4339; Choi, D.H., Baker, A., Lanagan, M., Trolier-McKinstry, S., Randall, C.A., Structural and dielectric properties in (1−x)BaTiO3–xBi(Mg1/2Ti1/2)O3 ceramics (0.1 ≤ x ≤ 0.5) and potential for high-voltage multilayer capacitors (2013) J. Am. Ceram. Soc., 96, pp. 2197-2202; Hao, H., Liu, H., Zhang, S.J., Xiong, B., Shu, X., Yao, Z.H., Cao, M., Fabrication, structure and property of BaTiO3-based dielectric ceramics with a multilayer core–shell structure (2012) Scr. Mater., 67, pp. 451-454; Huang, C.C., Cann, D.P., Phase transitions and dielectric properties in Bi(Zn1/2Ti1/2)O3−BaTiO3 perovskite solid solutions (2008) J. Appl. Phys., 104, p. 024117; Wang, X.P., Wu, J.G., Xiao, D., Zhu, J., Cheng, X., Zheng, T., Zhang, B., Wang, X., Giant piezoelectricity in potassium–sodium niobate lead-free ceramics (2014) J. Am. Chem. Soc., 136, pp. 2905-2910; Zhang, Y., Huang, J.J., Ma, T., Wang, X., Deng, C., Dai, X., Sintering temperature dependence of energy-storage properties in (Ba,Sr)TiO3 glass–ceramics (2011) J. Am. Ceram. Soc., 94, pp. 1805-1810; Yao, Z.H., Song, Z., Hao, H., Yu, Z., Cao, M., Zhang, S.J., Lanagan, M.T., Liu, H., Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances, Adv. Mater. published online, doi; Nishino, A., Capacitors: operating principles, current market and technical trends (1996) J. Power Sources, 60, pp. 137-147; Zeb, A., Bai, Y., Button, T., Milne, S.J., Temperature-stable relative permittivity from −70 °C to 500 °C in (Ba0.8Ca0.2)TiO3–Bi(Mg0.5Ti0.5)O3–NaNbO3 ceramics (2014) J. Am. Ceram. Soc., 97, pp. 2479-2483; Yao, G., Wang, X., Sun, T., Li, L., Effects of CaZrO3 on X8R nonreducible BaTiO3-based dielectric ceramics (2011) J. Am. Ceram. Soc., 94, pp. 3856-3862; Xu, G.Y., Zhong, Z., Bing, Y., Ye, Z.G., Shirane, G., Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric (2006) Nat. Mater., 5, pp. 134-140; Wang, J., Liu, Y., Li, Q., Lau, K., Withers, R.L., Li, Z.R., Xu, Z., Dipolar-glass-like relaxor ferroelectric behaviour in the 0.5BaTiO3-0.5Bi(Mg1/2Ti1/2)O3 electroceramic (2013) Appl. Phys. Lett., 103, p. 042910; Ogihara, H., Randall, C.A., Trolier-McKinstry, S., Weakly coupled relaxor behavior of BaTiO3–BiScO3 ceramics (2009) J. Am. Ceram. Soc., 92, pp. 110-118; Xiong, B., Hao, H., Zhang, S.J., Liu, H.X., Cao, M.H., Structure, dielectric properties and temperature stability of BaTiO3–Bi(Mg1/2Ti1/2)O3 perovskite solid solutions (2011) J. Am. Ceram. Soc., 94, pp. 3412-3417; Liu, Z.Y., Fan, H.Q., Li, M.M., High temperature stable dielectric properties of (K0.5Na0.5)0.985Bi0.015Nb0.99Cu0.01O3 ceramics with core–shell microstructures (2015) J. Mater. Chem. C, 3, pp. 5851-5858; Wada, S., Yamato, K., Pulpan, P., Kumada, N., Lee, B.Y., Lijima, T., Moriyoshi, C., Kuroiwa, Y., Piezoelectric properties of high Curie temperature barium titanate–bismuth perovskite-type oxide system ceramics (2010) J. Appl. Phys., 108, p. 094114; Hu, Q., Wang, T., Zhao, L.Y., Jin, L., Xu, Z., Wei, X.Y., Dielectric and energy storage properties of BaTiO3–Bi(Mg1/2Ti1/2)O3 ceramic: influence of glass addition and biasing electric field (2017) Ceram. Int., 43, pp. 35-39; Hu, Q., Jin, L., Wang, T., Li, C., Xing, Z., Wei, X.Y., Dielectric and temperature stable energy storage properties of 0.88BaTiO3–0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics (2015) J. Alloy. Compd., 640, pp. 416-420; Viehland, D., Jang, S., Cross, L.E., Wutting, M., Freezing of the polarization fluctuations in lead magnesium niobate relaxors (1990) J. Appl. Phys., 68, p. 2916; Glazounov, A.E., Tagantsev, A.K., Direct evidence for Vögel–Fulcher freezing in relaxor ferroelectrics (1998) Appl. Phys. Lett., 73, pp. 856-858; Tagantsev, A.K., Vogel-Fulcher relationship for the dielectric permittivity of relaxor ferroelectrics (1994) Phys. Rev. Lett., 72, pp. 1100-1103; Colla, E., Koroleva, E., Okuneva, N.M., Vakhrushev, S., Long-time relaxation of the dielectric response in lead magnoniobate (1995) Phys. Rev. Lett., 74, pp. 1681-1684; Vakhrushev, S., Kvyatkovsky, B.E., Naberezhnov, A.A., Okuneva, N.M., Toperverg, B.P., Glassy phenomena in disordered perovskite-like crystals (1989) Ferroelectrics, 90, pp. 173-176; Blinc, R., Dolinsek, J., Gregorovic, A., Zalar, B., Filipic, C., Kutnjak, Z., Levstik, A., Pirc, R., Local polarization distribution and Edwards-Anderson order parameter of relaxor ferroelectrics (1999) Phys. Rev. Lett., 83, pp. 424-427; Jonscher, A.K., Low-loss dielectrics (1999) J. Mater. Sci., 34, pp. 3071-3082; Jonscher, A.K., Dielectric Relaxation in Solids (1983), Chelsea Dielectric Press London; Bokov, A.A., Ye, Z.G., Freezing of dipole dynamics in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 as evidenced by dielectric spectroscopy (2000) J. Phys.: Condens. Matter, 12, pp. L541-L548; Bokov, A.A., Maglione, M., Ye, Z.G., Quasi-ferroelectric state in Ba(Ti1−xZrx)O3 relaxor: dielectric spectroscopy evidence (2007) J. Phys.: Condens. Matter, 19, pp. 1-10; Wu, J., Wang, J., BiFeO3 thin films of (111)-orientation deposited on SrRuO3 buffered Pt/TiO2/SiO2/Si(1 0 0) substrates (2010) Acta Mater., 58, pp. 1688-1697; Wu, J., Wang, J., Ferroelectric and impedance behavior of La- and Ti-codoped BiFeO3 thin films (2010) J. Am. Ceram. Soc., 93, pp. 2795-2803; Hirose, N., West, A.R., Impedance spectroscopy of undoped BaTiO3 ceramics (1996) J. Am. Ceram. Soc., 79, pp. 1633-1641; Morrison, F.D., Sinclair, D.C., West, A.R., Electrical and structural characteristics of lanthanum-doped barium titanate ceramics (1999) J. Appl. Phys., 86, pp. 6355-6366; Liu, J., Duan, C.C., Yin, W.G., Mei, W.N., Smith, R.W., Hardy, J.R., Large dielectric constant and Maxwell-Wagner relaxation in Bi2/3Cu3Ti4O12 (2004) Phys. Rev. B., 70, p. 144106; MacChesney, J.B., Gallagher, P.K., Dimarcello, F.V., Stabilized barium titanate ceramics for capacitor dielectrics (1963) J. Am. Ceram. Soc., 46, pp. 197-202; Pinczuk, A., Taylor, W.T., Burstein, E., Lefkowitz, I., The Raman spectrum of BaTiO3 (1967) Solid State Commun., 5, pp. 429-433; DiDomenico, M., Jr, Wemple, S.H., Porto, S.P.S., Bauman, R.P., Raman spectrum of single-domain BaTiO3 (1968) Phys. Rev., 174, pp. 522-530; Burns, G., Scott, B.A., Raman scattering in the ferroelectric system Pb1−xBaxTiO3 (1971) Solid State Commun., 9, p. 813; Ren, P., Wang, X., Fan, H., Ren, Y., Zhao, G.Y., Structure, relaxation behaviors and nonlinear dielectric properties of BaTiO3–Bi(Ti0.5Mg0.5)O3 ceramics (2015) Ceram. Int., 41, pp. 7693-7697; Triamnak, N., Yimnirun, R., Pokorny, J., Cann, D.P., Relaxor characteristics of the phase transformation in (1−x)BaTiO3–xBi(Zn1/2Ti1/2)O3 perovskite ceramics (2013) J. Am. Ceram. Soc., 96, pp. 3176-3182; Zheng, H., Csete de Györgyfalva, G.D.C., Quimby, R., Bagshaw, H., Ubic, R., Reaney, I.M., Yarwood, J., Raman spectroscopy of B-site order–disorder in CaTiO3-based microwave ceramics (2003) J. Eur. Ceram. Soc., 23, pp. 2653-2659
Correspondence Address Jin, L.; Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong UniversityChina; email: ljin@mail.xjtu.edu.cn
Publisher Elsevier Ltd
CODEN CINND
Language of Original Document English
Abbreviated Source Title Ceram Int
Source Scopus