References |
Petrukhin, I., Lunina, E.Y., Cardiovascular disease risk factors and mortality in Russia: Challenges and barriers (2012) Pub. Health Rev, 33 (2), pp. 436-449; Muramatsu, T., Onuma, Y., Zhang, Y.J., Progress in treatment by percutaneous coronary intervention: The stent of the future (2013) Rev. Esp. Cardiol, 66 (6), pp. 483-496; Onuma, Y., Muramatsu, T., Kharlamov, A., Serruys, P.W., Freeling the vessel from metallic cage: What can we achieve with bioresorbable vascular scaffolds? Cardiovasc (2012) Interv. Ther, 27 (3), pp. 141-154; Kharlamov, A., Gabinsky, J., Plasmonic nanophotothermal and stem cell therapy of atherosclerotic plaque as the novel tool for angioplasty and artery remodeling (2012) Rejuvenation Res, 15 (2), pp. 222-230; Godin, B., Sakamoto, J.H., Serda, R.E., Grattoni, A., Bouamrani, A., Ferrari, M., Emerging applications of nanomedicine for therapy and diagnosis of cardiovascular diseases (2010) Trends Pharmacol. Sci, 31 (5), pp. 199-205; Jayagopal, A., Linton, M.F., Fazio, S., Haselton, F.R., Insights into atherosclerosis using nanotechnology (2010) Curr. Arterioscler. Rep, 12 (3), pp. 209-215; Tang, J., Lobatto, M.E., Read, J.C., Mieszawska, A.J., Fayad, Z.A., Mulder, W.J., Nanomedical theranostics in cardiovascular disease (2012) Curr. Cardiovasc. Imaging Rep, 5 (1), pp. 19-25; Wang, B., Emelianov, S., Thermal intravascular photoacoustic imaging (2011) Biomedical Optics Express, 2 (11), pp. 3072-3078; Kharlamov, A.N., Tyurnina, A.E., Veselova, V.S., Kovtun, O.P., Shur, V.Y., Gabinsky, J.L., Silica-gold nanoparticles for atheroprotective management of plaques: Results of the NANOM-FIM trial (2015) Nanoscale, 7 (17), pp. 8003-8015; Kharlamov, A.N., Plasmonic photothermal therapy for atheroregression below Glagov threshold (2013) Future Cardiol, 9 (3), pp. 405-425; Yeager, D., Chen, Y.S., Litovsky, S., Emelianov, S., Intravascular photoacoustics for image-guidance and temperature monitoring during plasmonic photothermal therapy of atherosclerotic plaques: A feasibility study (2013) Theranostics, 4 (1), pp. 36-46; Nicholls, S.J., Ballantyne, C.M., Barter, P.J., Effect of two intensive statin regimens on progression of coronary disease (2011) N. Engl. J. Med, 365 (22), pp. 2078-2087; Nissen, S., Tsunoda, T., Tuzcu, E.M., Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: A randomized controlled trial (2003) J. Am. Med. Assoc, 290 (17), pp. 2292-2300; Oberdorster, G., Safety assessment for nanotechnology and nanomedicine: Concepts of nanotoxicology (2009) J. Intern. Med, 267 (1), pp. 89-105; Van Hoecke, K., Schamphelaere, K.A., Ali, Z., Ecotoxicity and uptake of polymer coated gold nanoparticles (2013) Nanotoxicology, 7 (1), pp. 37-47; Lee, K.Y., Lee, Y.W., Kwon, K., One-step fabrication of gold nanoparticles-silica composites with enhanced catalytic activity (2008) Chem. Physics Lett, 453 (1-3), pp. 77-81; Glagov, S., Weisenberg, E., Zarins, C.K., Compensatory enlargement of human atherosclerotic coronary arteries (1987) N. Engl. J. Med, 316 (22), pp. 1371-1375; Stuckler, D., King, L., McKee, M., Mass privatization and the post-communist mortality crisis: A cross-national analysis (2009) Lancet, 373 (9661), pp. 399-407; Kozlova, E., Chernysh, A., Moroz, V., Transformation of membrane nanosurface of red blood cells under hemin action (2014) Sci. Rep, 4, p. 6033; Lapotko, D., Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications (2009) Nanomedicine (Lond), 4 (7), pp. 813-845; Cai, W., Gao, T., Hong, H., Applications of gold nanoparticles in cancer nanotechnology (2008) Nanotechnol. Sci. Appl, 2008 (1), pp. 17-32; Chen, P.C., Mwakwari, S.C., Oyelere, A.K., Gold nanoparticles: From nanomedicine to nanosensing (2008) Nanotechnol. Sci. Appl, 2008 (1), pp. 45-66; Katsnelson, B.A., Privalova, L.I., Gurvich, V.B., Comparative in vivo assessment of some adverse bioeffects of equidimensional gold and silver nanoparticles and the attenuation of nanosilver's effects with a complex of innocuous bioprotectors (2013) Int. J. Mol. Sci, 14 (2), pp. 2449-2483; Lobatto, M.E., Fuster, V., Fayad, Z.A., Mulder, W.J., Perspectives and opportunities for nanomedicine in the management of atherosclerosis (2011) Nat. Rev. Drug Discov, 10 (11), pp. 835-852; Maksimova, I.L., Akchurin, G.G., Khlebtsov, B.N., Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: Computer simulations and experiment (2007) Med. Laser Appl, 22 (3), pp. 199-206; Pan, Y., Neuss, S., Leifert, A., Size-dependent cytotoxicity of gold nanoparticles (2007) Small, 3 (11), pp. 1941-1949; Alkilani, A.M., Murphy, C.J., Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J (2010) Nanopart. Res, 12 (7), pp. 2313-2333; Singh, N., Jenkins, G.J.S., Asadi, R., Doak, S.H., Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION) (2010) Nano Rev, 1, pp. 1-15; Nissen, S.E., Nicholls, S.J., Sipahi, I., Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: The ASTEROID trial (2006) J. Am. Med. Assoc, 295 (13), pp. 1556-1565; Wender, H., Andreazza, M.L., Correia, R.R., Teixeira, S.R., Dupont, J., Synthesis of gold nanoparticles by laser ablation of an Au foil inside and outside ionic liquids (2011) Nanoscale, 3 (3), p. 1240; Lin, J., Zhang, H., Chen, Z., Zheng, Y., Penetration of lipid membranes by gold nanoparticles: Insights into cellular uptake, cytotoxicity, and their relationship (2010) ACS Nano, 4 (9), pp. 5421-5429; Tyurnina, A.E., Shur, V.Y., Kozin, R.V., Kuznetsov, D.K., Mingaliev, E.A., Synthesis of stable silver colloids by laser ablation in water (2013) Proc. SPIE, 9065, p. D90650; Oldenburg, S.J., Jackson, J.B., Westcott, S.L., Halas, N.J., Infrared extinction properties of gold nanoshells (2016) Appl. Phys. Lett, 75 (19), pp. 2897-2899; Hirsch, L.R., Stafford, R.J., Bankson, J.A., Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance (2003) Proc. Natl Acad. Sci. USA, 100 (23), pp. 13549-13554; Cormode, D.P., Roessl, E., Thran, A., Atherosclerotic plaque composition: Analysis with multicolor CT and targeted gold nanoparticles (2010) Radiology, 256 (3), pp. 774-782; Rockson, S.G., Kramer, P., Razavi, M., Photoangioplasty for human peripheral atherosclerosis: Results of a phase i trial of photodynamic therapy with motexafin lutetium (Antrin) (2000) Circulation, 102 (19), pp. 2322-2324; Tucker-Schwartz, J.M., Hong, T., Colvin, D.C., Xu, Y., Skala, M.C., Dual modality photothermal optical coherence tomography and magnetic resonance imaging of carbon nanotubes (2012) Opt. Lett, 37 (5), pp. 872-874; Wang, X., Wang, C., Cheng, L., Lee, S.T., Liu, Z., Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy (2012) J. Am. Chem. Soc, 134 (17), pp. 7414-7422; Son, D., Lee, J., Lee, D.J., Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases (2015) ACS Nano, 9 (6), pp. 5937-5946; Kharlamov, A.N., Why do we fail to achieve Glagovian atheroregression in lipid-lowering trials? Intervent (2015) Cardiol, 7 (5), pp. 469-482. , 10.2217ica.15.37; Thygesen, K., Alpert, J.S., White, H.D., Universal definition of myocardial infarction (2007) Eur. Heart J, 28 (20), pp. 2525-2538; Thygesen, K., Alpert, J.S., Jaffe, A.S., Third universal definition of myocardial infarction (2012) Eur. Heart J, 33 (20), pp. 2551-2567; Adams, H.P., Adams, R.J., Brott, T., Guidelines for the early management of patients with ischemic stroke (2003) Stroke, 34, pp. 1056-1083; Kharlamov, A.N., Cardiovascular burden and percutaneous interventions in Russian Federation: Systematic epidemiological update (2017) Cardiovasc Diagn Ther, 7 (1), pp. 60-84; Kharlamov, A.N., Glimpse into the future of nanotheranostic strategies for regression of atherosclerosis through the prism of systems biomedicine: Systematic review of innovations from multifunctional nanoformulations to devices on chip (2016) Curr. Nanomedicine, 6 (3), pp. 186-218; Carlander, U., Li, D., Jolliet, O., Emond, C., Johanson, G., Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles (2016) Int. J. Nanomedicine, 2016 (11), pp. 625-640; Rothen-Rutishauser, B.M., Schürch, S., Haenni, B., Kapp, N., Gehr, P., Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques (2006) Environ. Sci. Technol, 40 (14), pp. 4353-4359 |