Self-Assembly of Organic Ferroelectrics by Evaporative Dewetting: A Case of β-Glycine / Seyedhosseini E., Romanyuk K., Vasileva D., Vasilev S., Nuraeva A., Zelenovskiy P., Ivanov M., Morozovska A.N., Shur V.Y., Lu H., Gruverman A., Kholkin A.L. // ACS Applied Materials and Interfaces. - 2017. - V. 9, l. 23. - P. 20029-20037.

ISSN:
19448244
Type:
Article
Abstract:
Self-assembly of ferroelectric materials attracts significant interest because it offers a promising fabrication route to novel structures useful for microelectronic devices such as nonvolatile memories, integrated sensors/actuators, or energy harvesters. In this work, we demonstrate a novel approach for self-assembly of organic ferroelectrics (as exemplified by ferroelectric β-glycine) using evaporative dewetting, which allows forming quasi-regular arrays of nano- and microislands with preferred orientation of polarization axes. Surprisingly, self-assembled islands are crystallographically oriented in a radial direction from the center of organic "grains" formed during dewetting process. The kinetics of dewetting process follows the t-1/2 law, which is responsible for the observed polygon shape of the grain boundaries and island coverage as a function of radial position. The polarization in ferroelectric islands of β-glycine is parallel to the substrate and switchable under a relatively small dc voltage applied by the conducting tip of piezoresponse force microscope. Significant size effect on polarization is observed and explained within the Landau-Ginzburg-Devonshire phenomenological formalism. © 2017 American Chemical Society.
Author keywords:
dewetting; glycine; organic ferroelectrics; self-assembly; size effect
Index keywords:
Amino acids; Ferroelectricity; Grain boundaries; Microelectronics; Polarization; Self assembly; De-wetting; Integrated sensors; Micro-electronic devices; Non-volatile memory; Piezo-response force micr
DOI:
10.1021/acsami.7b02952
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020778811&doi=10.1021%2facsami.7b02952&partnerID=40&md5=ffeceb6e6b5f09e8e394b782eab798a5
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020778811&doi=10.1021%2facsami.7b02952&partnerID=40&md5=ffeceb6e6b5f09e8e394b782eab798a5
Affiliations Department of Physics, CICECO - Materials Institute of Aveiro, University of Aveiro, Aveiro, Portugal; School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federation; Institute of Physics, National Academy of Science of Ukraine, Kyiv, Ukraine; Department of Physics and Astronomy, University of Nebraska, Lincoln, NE, United States
Author Keywords dewetting; glycine; organic ferroelectrics; self-assembly; size effect
Funding Details SFRH/BPD/88362/2012, FCT, Fundação para a Ciência e a Tecnologia
Funding Text This work was funded by the Luso-American Foundation (FLAD) (grant no. 299/2015). K.R. is grateful to the financial support of FCT via his postdoctoral grant SFRH/BPD/88362/2012. Part of this work was developed in the scope of project CICECO-Aveiro Institute of Materials (ref FCT UID/CTM/50011/2013), financed by national funds through the FCT/MEC and, when applicable, cofinanced by FEDER under the PT2020 Partnership. P.Z. is grateful for support from the Ministry of Education and Science of the Russian Federation through the RF President grant for young scientists MK-6554.2015.2.
References Uchino, K., (2000) Ferroelectric Devices, p. 308. , Marcel Dekker, Inc. New York; Scott, J.F., Applications of modern ferroelectrics (2007) Science, 315, pp. 954-959; Cross, J.S., Coutsaroff, I., Review on ferroelectric thin film devices: Fundamental aspects and integration challenges (2010) J. Technol. Assoc. Refract., Jpn., 62, pp. 162-174; Horiuchi, S., Tokura, Y., Organic ferroelectrics (2008) Nat. Mater., 7, pp. 357-366; Naber, R.C.G., Asadi, K., Blom, P.W.M., De Leeuw, D.M., De Boer, B., Organic nonvolatile memory devices based on ferroelectricity (2010) Adv. Mater., 22, pp. 933-945; Khan, M.A., Bhansali, U.S., Alshareef, H.N., High-performance non-volatile organic ferroelectric memory on banknotes (2012) Adv. Mater., 24, pp. 2165-2170; Han, H., Kim, Y., Alexe, M., Hesse, D., Lee, W., Nanostructured ferroelectrics: Fabrication and structure-property relations (2011) Adv. Mater., 23, pp. 4599-4613; Alexe, M., Harnagea, C., Hesse, D., Goesele, U., Patterning and switching of nanosize ferroelectric memory cells (1999) Appl. Phys. Lett., 75, pp. 1793-1795; Roelofs, A., Schneller, T., Szot, K., Waser, R., Towards the limit of ferroelectric nanosized grains (2003) Nanotechnology, 14, pp. 250-253; Gruverman, A., Kholkin, A., Nanoscale ferroelectrics: Processing, characterization and future trends (2006) Rep. Prog. Phys., 69, pp. 2443-2474; Hu, Z., Baralia, G., Bayot, V., Gohy, J.F., Jonas, A.M., Nanoscale control of polymer crystallization by nanoimprint lithography (2005) Nano Lett., 5, pp. 1738-1743; Hu, Z., Tian, M., Nysten, B., Jonas, A.M., Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories (2009) Nat. Mater., 8, pp. 62-67; Harnagea, C., Alexe, M., Schilling, J., Choi, J., Wehrspohn, R.B., Hesse, D., Goesele, U., Mesoscopic ferroelectric cell arrays prepared by imprint lithography (2003) Appl. Phys. Lett., 83, pp. 1827-1829; Song, H., Lu, S., Li, S., Tan, L., Gruverman, A., Ducharme, S., Fabrication of ferroelectric polymer nanostructures on flexible substrates by soft-mold reverse nanoimprint lithography (2016) Nanotechnology, 27, p. 015302; Bai, M., Ducharme, S., Ferroelectric nanomesa formation from polymer langmuir-blodgett films (2004) Appl. Phys. Lett., 85, pp. 3528-3530; Sharma, P., Reece, T.J., Ducharme, S., Gruverman, A., High-resolution studies of domain switching behavior in nanostructured ferroelectric polymers (2011) Nano Lett., 11, pp. 1970-1975; Chen, J., Qin, S., Wu, X., Chu, P.K., Morphology and pattern control of diphenylalanine self-assembly via evaporative dewetting (2016) ACS Nano, 10, pp. 832-838; Heredia, A., Meunier, V., Bdikin, I.K., Gracio, J., Balke, N., Jesse, S., Tselev, A., Kholkin, A.L., Nanoscale ferroelectricity in crystalline ?-glycine (2012) Adv. Funct. Mater., 22, pp. 2996-3003; Lofgren, P., Krozer, A., Lausmaa, J., Kasemo, B., Glycine on Pt(111): A TDS and XPS study (1997) Surf. Sci., 370, pp. 277-292; Zhao, X.Y., Rodriguez, J., Photoemission study of glycine adsorption on Cu/Au(111) interfaces (2006) Surf. Sci., 600, pp. 2113-2121; Nyberg, M., Hasselstrom, J., Karis, O., Wassdahl, N., Weinelt, M., Nilsson, A., Pettersson, L.G.M., The electronic structure and surface chemistry of glycine adsorbed on Cu (110) (2000) J. Chem. Phys., 112, pp. 5420-5427; Seyedhosseini, E., Ivanov, M., Bystrov, V., Bdikin, I., Zelenovskiy, P., Shur, V.Y., Kudryavtsev, A., Kholkin, A.L., Growth and nonlinear optical properties of β-glycine crystals grown on pt substrates (2014) Cryst. Growth Des., 14, pp. 2831-2837; Zelenovskiy, P., Vasileva, D., Nuraeva, A., Vasilev, S., Khazamov, T., Dikushina, E., Shur, V.Y., Kholkin, A.L., Spin coating formation of self-assembled ferroelectric β-glycine films (2016) Ferroelectrics, 496, pp. 10-19; Okerberg, B.C., Berry, B.C., Garvey, T.R., Douglas, J.F., Karim, A., Soles, C.L., Competition between crystallization and dewetting fronts in thin polymer films (2009) Soft Matter, 5, pp. 562-567; Xie, R., Karim, A., Douglas, J.F., Han, C.C., Weiss, R.A., Spinodal dewetting of thin polymer films (1998) Phys. Rev. Lett., 81, pp. 1251-1254; Isakov, D., Petukhova, D., Vasilev, S., Nuraeva, A., Khazamov, T., Seyedhosseini, E., Zelenovskiy, P., Kholkin, A.L., In situ observation of the humidity controlled polymorphic phase transformation in glycine microcrystals (2014) Cryst. Growth Des., 14, p. 4138; Kholkin, A.L., Kalinin, S.V., Roelofs, A., Gruverman, A., Review of ferroelectric domain imaging by piezoresponse force microscopy (2006) Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, pp. 173-214. , Kalinin, S. Gruverman, A. Springer: New York; Nath, R., Hong, S., Klug, J.A., Imre, A., Bedzyk, M.J., Katiyar, R.S., Auciello, O., Effects of cantilever buckling on vector piezoresponse force microscopy imaging of ferroelectric domains in BiFeO3 nanostructures (2010) Appl. Phys. Lett., 96, p. 163101; Peter, F., Rüdiger, A., Dittmann, R., Waser, R., Szot, K., Reichenberg, B., Prume, K., Analysis of shape effects on the piezoresponse in ferroelectric nanograins with and without adsorbates (2005) Appl. Phys. Lett., 87, p. 082901; Pertsev, N.A., Kholkin, A.L., Subsurface nanodomains with in-plane polarization in uniaxial ferroelectrics via scanning force microscopy (2013) Phys. Rev. B: Condens. Matter Mater. Phys., 88, p. 174109; Ievlev, A.V., Alikin, D.O., Morozovska, A.N., Varenyk, O.V., Eliseev, E.A., Kholkin, A.L., Shur, V.Y., Kalinin, S.V., Symmetry breaking and electrical frustration during tip-induced polarization switching in the nonpolar cut of lithium niobate single crystals (2015) ACS Nano, 9, pp. 769-777; Lurie, A.I., (1955) Spatial Problems of the Elasticity Theory, , (Gos. Izd. Teor. Tekh. Lit. Moscow) in Russian; Tagantsev, A.K., Gerra, G., Interface-induced phenomena in polarization response of ferroelectric thin films (2006) J. Appl. Phys., 100, pp. 0516071-05160728; Morozovska, A.N., Eliseev, E.A., Krishnan, P.S.R., Tselev, A., Strelkov, E., Borisevich, A., Varenyk, O.V., Nagarajan, V., Defect thermodynamics and kinetics in thin strained ferroelectric films: The interplay of possible mechanisms (2014) Phys. Rev. B: Condens. Matter Mater. Phys., 89, p. 054102; Morozovska, A.N., Eliseev, E.A., Bravina, S.L., Kalinin, S.V., Resolution-function theory in piezoresponse force microscopy: Wall imaging, spectroscopy, and lateral resolution (2007) Phys. Rev. B: Condens. Matter Mater. Phys., 75, p. 174109; Morozovska, A.N., Eliseev, E.A., Tagantsev, A.K., Bravina, S.L., Chen, L.Q., Kalinin, S.V., Thermodynamics of electromechanically coupled mixed ionic-electronic conductors: Deformation potential, vegard strains, and flexoelectric effect (2011) Phys. Rev. B: Condens. Matter Mater. Phys., 83, p. 195313; Fortune, S.A., Sweepline algorithm for voronoi diagrams (1987) Algorithmica, 2, pp. 153-174; Danielson, D.T., (2008) Anisotropic Dewetting in Ultra-thin Single-crystal Silicon-on-insulator Films, , Ph.D. thesis, Mass. Inst. Technol; Bussmann, E., Cheynis, F., Leroy, F., Muller, P., Pierre-Louis, O., Dynamics of solid thin-film dewetting in the silicon-on-insulator system (2011) New J. Phys., 13, p. 043017; Ye, J., Thompson, C.V., Anisotropic edge retraction and hole growth during solid-state dewetting of single crystal nickel thin films (2011) Acta Mater., 59, pp. 582-589; Brandon, R.H., Bradshaw, F.J., (1966) Royal Aircraft Establishment (Farnborough) Technical Report 66095; Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A., Capillary flow as the cause of ring stains from dried liquid drops (1997) Nature, 389, pp. 827-829; Hu, H., Larson, R.G., Marangoni effect reverses coffee-ring depositions (2006) J. Phys. Chem. B, 110, pp. 7090-7094; Hu, H., Larson, R.G., Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet (2005) Langmuir, 21, pp. 3972-3980; Vekilov, P.G., What determines the rate of growth of crystals from solution? (2007) Cryst. Growth Des., 7, pp. 2796-2810; Weeks, J.D., Gilmer, G.H., (1979) Dynamics of Crystal Growth, in Advances in Chemical Physics, 40, pp. 157-228. , Prigogine, I. Rice, S. A. John Wiley & Sons, Inc. Hoboken, NJ; Burton, W.K., Cabrera, N., Frank, F.C., The growth of crystals and the equilibrium structure of their surfaces (1951) Philos. Trans. R. Soc., A, 243, pp. 299-358
Correspondence Address Kholkin, A.L.; Department of Physics, CICECO - Materials Institute of Aveiro, University of AveiroPortugal; email: kholkin@ua.pt
Publisher American Chemical Society
Language of Original Document English
Abbreviated Source Title ACS Appl. Mater. Interfaces
Source Scopus