Physical properties and reentrant behavior in PLZT thin films / Melo M., Araujo E.B., Neradovskaya E.A., Turygin A.P., Esin A.A., Shur V.Y., Kholkin A.L. // Ferroelectrics. - 2017. - V. 509, l. 1. - P. 1-9.

ISSN:
00150193
Type:
Article
Abstract:
La-modified lead zirconate titanate (PLZT) thin films were prepared to study their physical properties at macro- and nanoscale. Piezoresponse force microscopy (PFM) studies suggest a local imprint behavior at room temperature. Confirmed by P-E hysteresis loops recorded at 180-300 K, the imprint effect at room temperature tends to disappear at lower temperatures. In addition, the remanent polarization gradually increases and then decreases after reaching a maximum at around 243 K. This behavior suggests the occurrence of a reentrant dipole glass or an activated electric field effect in the studied PLZT films. © 2017 Taylor & Francis Group, LLC.
Author keywords:
dipole glass; PLZT; relaxors; thin films
Index keywords:
Electric field effects; Electric fields; Ferroelectric ceramics; Glass; Physical properties; Scanning probe microscopy; Semiconducting lead compounds; Dipole glass; Lead zirconate titanate; Lower temp
DOI:
10.1080/00150193.2017.1289792
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019122061&doi=10.1080%2f00150193.2017.1289792&partnerID=40&md5=dc826ef088fee11f7c7703dbbfab340c
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019122061&doi=10.1080%2f00150193.2017.1289792&partnerID=40&md5=dc826ef088fee11f7c7703dbbfab340c
Affiliations Department of Physics and Chemistry, São Paulo State University, Ilha Solteira, SP, Brazil; School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federation; Department of Physics & CICECO–Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
Author Keywords dipole glass; PLZT; relaxors; thin films
References Haertling, G.H., Land, C.E., Hot-pressed (Pb, La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications (1971) J Am Ceram Soc., 54, pp. 1-11; Haertling, G.H., Electro-optic ceramics and devices (1988) Electronic Ceramics, pp. 371-492. , Levinson L.M., (ed), New York: Marcel Dekker; Bokov, A.A., Ye, Z.G., Recent progress in relaxor ferroelectrics with perovskite structure (2006) J Mat Sci., 41, pp. 31-52; Haertling, G.H., Ferroelectric ceramics: History and technology (1999) J Am Ceram Soc., 82, pp. 797-818; Lynch, C.S., The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT (1996) Acta Mater., 44, pp. 4137-4148; Ferri, A., Saitzek, S., Da Costa, A., Desfeux, R., Leclerc, G., Bouregba, R., Poullain, G., Thickness dependence of the nanoscale piezoelectric properties measured by piezoresponse force microscopy on (111)-oriented PLZT 10/40/60 thin films (2008) Surf Sci., 602, pp. 1987-1992; Fujii, T., Suzuki, T., Fujimori, Y., Nakamura, T., Moriwake, M., Takasu, H., Development of (Pb,La)(Zr,Ti)O3 electro-optic thin film for high-speed spatial light modulator (2006) Jpn J Appl Phys., 45, pp. 7520-7524; Dimos, D., Warren, W.L., Sinclair, M.B., Tuttle, B.A., Schwartz, R.W., Photoinduced hysteresis changes and optical storage in (Pb,La)(Zr,Ti)O3 thin-films and ceramics (1994) J Appl Phys., 76, pp. 4305-4315; Blinc, R., Laguta, V.V., Zalar, B., Polar nanoclusters in relaxors (2006) J Mat Sci., 41, pp. 27-30; Kholkin, A.L., Kiselev, D.A., Bdikin, I.K., Sternberg, A., Dkhil, B., Jesse, S., Ovchinnikov, O., Kalinin, S.V., Mapping disorder in polycrystalline relaxors: A piezoresponse force microscopy approach (2010) Materials, 3, pp. 4860-4870; Bharadwaja, S.S.N., Kim, J.R., Ogihara, H., Cross, L.E., Trolier-McKinstry, S., Randall, C.A., Critical slowing down mechanism and reentrant dipole glass phenomena in (1-x)BaTiO3-xBiScO3 (0.1 <= x <= 0.4): The high energy density dielectrics (2011) Phys Rev B., 83, p. 024106; Krayzman, V., Levin, I., Woicik, J.C., Bridges, F., Correlated rattling-ion origins of dielectric properties in reentrant dipole glasses BaTiO3-BiScO3 (2015) Appl Phys Lett., 107, p. 192903; Lei, C., Ye, Z.G., Re-entrant-like relaxor behaviour in the new 0.99BaTiO3-0.01AgNbO3 solid solution (2008) J Phys Condens Matter., 20, p. 232201; Huang, C.J., Li, K., Wu, S.Y., Zhu, X.L., Chen, X.M., Variation of ferroelectric hysteresis loop with temperature in (SrxBa1-x)Nb2O6 unfilled tungsten bronze ceramics (2015) J Materiomics., 1, pp. 146-152; Araujo, E.B., Nahime, B.O., Melo, M., Dinelli, F., Tantussi, F., Baschieri, P., Fuso, F., Allegrini, M., Processing and structural properties of random oriented lead lanthanum zirconate titanate thin films (2015) Mater Res Bull., 61, pp. 26-31; Balke, N., Bdikin, I., Kalinin, S.V., Kholkin, A.L., Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: State of the art and prospects for the future (2009) J Am Ceram Soc., 92, pp. 1629-1647; Wu, A., Vilarinho, P.M., Shvartsman, V.V., Suchaneck, G., Kholkin, A.L., Domain populations in lead zirconate titanate thin films of different compositions via piezoresponse force microscopy (2005) Nanotechnology., 16, pp. 2587-2595; Hong, S., Woo, J., Shin, H., Jeon, J.U., Pak, Y.E., Colla, E.L., Setter, N., No, K., Principle of ferroelectric domain imaging using atomic force microscope (2001) J Appl Phys., 89, pp. 1377-1386; Tian, L., Vasudevarao, A., Morozovska, A.N., Eliseev, E.A., Kalinin, S.V., Gopalan, V., Nanoscale polarization profile across a 180 degrees ferroelectric domain wall extracted by quantitative piezoelectric force microscopy (2008) J Appl Phys., 104, p. 074110; Afanasjev, V.P., Petrov, A.A., Pronin, I.P., Tarakanov, E.A., Kaptelov, E.J., Graul, J., Polarization and self-polarization in thin PbZr1-xTixO3 (PZT) films (2001) J Phys Condens Matter., 13, pp. 8755-8763; Lima, E.C., Araujo, E.B., Souza Filho, A.G., Paschoal, A.R., Bdikin, I.K., Kholkin, A.L., Structural depth profile and nanoscale piezoelectric properties of randomly oriented Pb(Zr0.50Ti0.50)O3 thin films (2012) J Phys D Appl Phys., 45, p. 215304; Melo, M., Araújo, E.B., Shvartsman, V.V., Shur, V.Y., Kholkin, A.L., Thickness effect on the structure, grain size, and local piezoresponse of self-polarized lead lanthanum zirconate titanate thin films (2016) J Appl Phys., 120, p. 054101; Damjanovic, D., Hysteresis in piezoelectric and ferroelectric materials (2005) The science of hysteresis, pp. 337-465. , Bertotti G., Mayergoyz I.D., (eds), Oxford: Elsevier; Guo, D., Wang, C., Shen, Q., Zhang, L., Li, M., Liu, J., Effect of measuring factors on ferroelectric properties of Bi3.15Nd0.85Ti3O12 thin films prepared by sol-gel method for non-volatile memory (2009) Appl Phys A, 97, pp. 877-881; Avrami, M., Kinetics of phase change I - General theory (1939) J Chem Phys., 7, pp. 1103-1112; Avrami, M., Kinetics of Phase Change. II Transformation-time relations for random distribution of nuclei (1940) J Chem Phys., 8, pp. 212-224; Avrami, M., Granulation, phase change, and microstructure - Kinetics of phase change III (1941) J Chem Phys., 9, pp. 177-184; Ishibashi, Y., Orihara, H., A theory of d-e hysteresis loop - application of Avrami model (1995) Integr Ferroelectr., 9, pp. 57-61; Scott, J.F., (2000) Ferroelectric memories., , Heidelberg: Springer; Lente, M.H., Picinin, A., Rino, J.P., Eiras, J.A., 90 degrees domain wall relaxation and frequency dependence of the coercive field in the ferroelectric switching process (2004) J Appl Phys., 95, pp. 2646-2653; Yang, S.M., Jo, Y.J., Kim, T.H., Yoon, J.G., Song, T.K., Lee, H.N., Marton, Z., Noh, T.W., Ac dynamics of ferroelectric domains from an investigation of the frequency dependence of hysteresis loops (2010) Phys Rev B., 82, p. 174125; Liu, S., Grinberg, I., Rappe, A.M., Intrinsic ferroelectric switching from first principles (2016) Nature., 534, pp. 360-363; Lente, M.H., Eiras, J.A., Frequency dependence of the switching polarisation in PZT ceramics (2001) Ferroelectrics., 257, pp. 227-232; Timonin, P.N., Dipole-glass concept and history-dependent phenomena in relaxors (2010) Ferroelectrics., 400, pp. 427-433; Bokov, A.A., Ye, Z.G., Reentrant phenomena in relaxors (2016) Nanoscale ferroelectrics and multiferroics: Key processing and characterization issues, and nanoscale effects., pp. 729-764. , Algueró M., Gregg J.M., Mitoseriu L., (eds), Chichester: John Wiley & Sons; Haertling, G.H., Improved hot-pressed electrooptic ceramics in the (Pb,La)(Zr,Ti)O3 system (1971) J Am Ceram Soc., 54, pp. 303-309; Kutnjak, Z., Bobnar, V., Filipic, C., Levstik, A., Glassy properties of 9/65/35 PLZT ceramics (2001) Ferroelectrics., 257, pp. 29-38
Correspondence Address Araujo, E.B.; Department of Physics and Chemistry, São Paulo State UniversityBrazil; email: eudes@dfq.feis.unesp.br
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus