Morphology and piezoelectric characterization of thin films and microcrystals of ortho-carboranyl derivatives of (S)-glutamine and (S)-asparagine / Nuraeva A.S., Zelenovskiy P.S., Slashchev A., Gruzdev D.A., Slepukhin P.A., Olshevskaya V.A., Krasnov V.P., Shur V.Y. // Ferroelectrics. - 2017. - V. 509, l. 1. - P. 113-123.

ISSN:
00150193
Type:
Article
Abstract:
Local morphological features and piezoelectric properties of films and bulk crystals of ortho-carboranyl derivatives of (S)-asparagine and (S)-glutamine have been investigated at nanoscale by atomic force and piezoresponse force microscopies. Both films and bulk crystals of the studied compounds demonstrated a very high piezoelectric response exceeding that of lithium niobate. The crystal structure has been studied by single crystal X-ray diffraction. © 2017 Taylor & Francis Group, LLC.
Author keywords:
amino acid derivatives; carboranes; Organic compounds; piezoelectrics; piezoresponse force microscopy
Index keywords:
Crystal structure; Lithium compounds; Organic compounds; Piezoelectricity; Scanning probe microscopy; Single crystals; Thin films; X ray diffraction; Amino acid derivatives; Carboranes; Morphological
DOI:
10.1080/00150193.2017.1295430
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019112359&doi=10.1080%2f00150193.2017.1295430&partnerID=40&md5=982abc78832bc925bc8e41b49dce6c1c
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019112359&doi=10.1080%2f00150193.2017.1295430&partnerID=40&md5=982abc78832bc925bc8e41b49dce6c1c
Affiliations School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federation; Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Division), Ekaterinburg, Russian Federation; Chemical Technological Institute, Ural Federal University, Ekaterinburg, Russian Federation; Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
Author Keywords amino acid derivatives; carboranes; Organic compounds; piezoelectrics; piezoresponse force microscopy
References Yamada, T., Niizeki, N., Toyoda, H., Piezoelectric and elastic properties of lithium niobate single crystals (1967) Jpn J Appl Phys., 6, pp. 151-155; Yang, J.S., Kim, S.H., Yeom, J.H., Koo, C.Y., Hwang, C.S., Yoon, E., Kim, D.J., Ha, J., Piezoelectric and pyroelectric properties of Pb(Zr,Ti)O3 films for micro-sensors and actuators (2003) Integr Ferroelectr., 54, pp. 515-525; Shur, V.Y., Lithium niobate and lithium tantalate-based piezoelectric materials (2010) Advanced Piezoelectric Materials: Science and technology, pp. 204-238. , Uchino K., (ed), Cambridge: Woodhead Publishing; Li, J., Liu, Y., Zhang, Y., Caic, H.L., Xiong, R.G., Molecular ferroelectrics: where electronics meet biology (2013) Phys Chem Chem Phys., 15, pp. 20786-20796; Denning, D., Guyonnet, J., Rodriguez, B.J., Applications of piezoresponse force microscopy in materials research: from inorganic ferroelectrics to biopiezoelectrics and beyond (2016) Int Mater Rev., 61, pp. 46-70; Vasilescu, D., Cornillon, R., Mallet, G., piezoelectric resonances in amino-acids (1970) Nature., 225, p. 635; Lemanov, V.V., Piezoelectric and pyroelectric properties of protein amino acids as basic materials of Soft State Physics (2000) Ferroelectrics., 238, pp. 211-218; Vasilev, S., Zelenovskiy, P., Vasileva, D., Nuraeva, A., Shur, V.Y., Kholkin, A.L., Piezoelectric properties of diphenylalanine microtubes prepared from the solution (2016) J Phys Chem Solids., 93, pp. 68-72; Isakov, D., Petukhova, D., Vasilev, S., Nuraeva, A., Khazamov, T., Seyedhosseini, E., Zelenovskiy, P., Kholkin, A.L., In situ observation of the humidity controlled polymorphic phase transformation in glycine microcrystals (2014) Cryst Growth Des., 14, pp. 4138-4142; Zakharov, B.A., Tumanov, N.A., Boldyreva, E.V., β-Alanine under pressure: towards understanding the nature of phase transitions (2015) CrystEngComm., 17, pp. 2074-2079; Grimes, R.N., (2011) Carboranes, , Second Edition, London-Amsterdam-Burlington-San Diego-Oxford: Academic Press; Scholz, M., Hey-Hawkins, E., Carbaboranes as pharmacophores: properties, synthesis, and application strategies (2011) Chem Rev., 111, pp. 7035-7062; Valliant, J.F., Guenther, K.J., King, A.S., Morel, P., Schaffer, P., Sogbein, O.O., Stephenson, K.A., The medicinal chemistry of carboranes (2002) Coord Chem Rev., 232, pp. 173-230; Satapathy, R., Dash, B.P., Maguire, J.A., Hosmane, N.S., New developments in the medicinal chemistry of carboranes (2010) Collect Czech Chem Commun., 75, pp. 995-1022; Issa, F., Kassiou, M., Rendina, L.M., Boron in drug discovery: carboranes as unique pharmacophores in biologically active compounds (2011) Chem Rev., 111, pp. 5701-5722; Morin, J.F., Shirai, Y., Tour, J.M., En Route to a motorized nanocar (2006) Org Lett., 8, pp. 1713-1716; Prokop, A., Vacek, J., Michl, J., Friction in carborane-based molecular rotors driven by gas flow or electric field: classical molecular dynamics (2012) ACS Nano., 6, pp. 1901-1914; Ganji, M.D., Ahangari, M.G., Emami, S.M., Carborane-wheeled nanocar moving on graphene/graphyne surfaces: van der Waals corrected density functional theory study (2014) Mater Chem Phys., 148, pp. 435-443; Czuprynski, K., Kaszynski, P., Homostructural two-ring mesogens: a comparison of p-carboranes, bicyclo[2.2.2]octane and benzene as structural elements (1999) Liq Cryst., 26, pp. 775-778; Januszko, A., Kaszynski, P., Wand, M.D., More, K.M., Pakhomov, S., O'Neill, M., Three-ring mesogens containing p-carboranes: characterization and comparison with the hydrocarbon analogs in the pure state and as additives to a ferroelectric mixture (2004) J Mater Chem., 14, pp. 1544-1553; Brusselle, D., Bauduin, P., Girard, L., Zaulet, A., Viñas, C., Teixidor, F., Ly, I., Diat, O., Lyotropic lamellar phase formed from monolayered θ-shaped carborane-cage amphiphiles (2013) Angew Chem Int Ed., 52, pp. 12114-12118; Thomas, J.C., Boldog, I., Auluck, H.S., Bereciartua, P.J., Dusek, M., Machacek, J., Bastl, Z., Base, T., Self-assembled p-carborane analogue of p-mercaptobenzoic acid of Au {111} (2015) Chem Mater., 27, pp. 5425-5435; Ma, L., Hamdi, J., Huang, J., Hawthorne, M.F., Camouflaged carborane amphiphiles: synthesis and self-assembly (2005) Inorg Chem., 44, pp. 7249-7258; Nuraeva, A.S., Vasileva, D.S., Vasilev, S.G., Zelenovskiy, P.S., Gruzdev, D.A., Krasnov, V.P., Olshevskaya, V.A., Shur, V.Y., Piezoelectric and ferroelectric properties of organic single crystals and films derived from chiral 2-methoxy and 2-amino acids (2016) Ferroelectrics., 496, pp. 1-9; Sheldrick, G.M., A short history of SHELX (2008) Acta Crystallogr A., 64, pp. 112-122; Koga, I., Aruga, M., Yoshinaka, Y., Theory of plane elastic waves in a piezoelectric crystalline medium and determination of elastic and piezoelectric constants of quartz (1958) Phys Rev., 109, pp. 1467-1473; Yue, W., Yi-Jian, J., Crystal orientation dependence of piezoelectric properties in LiNbO3 and LiTaO3 (2003) Opt Mater., 23, pp. 403-408
Correspondence Address Nuraeva, A.S.; School of Natural Sciences and Mathematics, Ural Federal UniversityRussian Federation; email: alla.nuraeva@urfu.ru
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus