Energy harvesting with biomaterials / Coondoo I., Kopyl S., Ivanov M., Shur V.Y., Kholkin A.L. // Electrically Active Materials for Medical Devices. - 2016. - V. , l. . - P. 297-316.

ISSN:
нет данных
Type:
Book Chapter
Abstract:
The past decades have witnessed a new trend in the paradigm of materials science and engineering. There has been an increased importance of interdisciplinary research and convergence of multiple areas. Specifically, bioorganic materials have attracted increasing interest beyond their conventional area of applications. Due to their excellent biocompatibility and novel functionalities such as piezoelectric or photovoltaic effects, bioorganic materials have been extensively studied for energy harvesting from environmental sources. This chapter aims at providing a brief overview of advances in the application of electronically active bioorganic materials with the specific focus for using them as integral components of energy harvesting devices. In this context, discussions encompass specifically the peptide nanotubes, organic fibres produced by electrospinning and virus-based self-assembled molecules. © 2016 by Imperial College Press.
Author keywords:
Index keywords:
нет данных
DOI:
10.1142/9781783269877_0021
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019852742&doi=10.1142%2f9781783269877_0021&partnerID=40&md5=6a7eb30fc86248ec7f6dea34256f75ff
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019852742&doi=10.1142%2f9781783269877_0021&partnerID=40&md5=6a7eb30fc86248ec7f6dea34256f75ff
Affiliations Department of Physics, CICECO, University of Aveiro, Portugal; Institute of Natural Sciences, Ural Federal University, Russian Federation
References Cook-Chennault, K.A., Thambi, N., Sastry, A.M., Powering MEMS portable devices - a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems (2008) Smart Mater. Struct., 17, p. 043001; Vatansever, D., Hadimani, R.L., Shah, T., Siores, E., An investigation of energy harvesting from renewable sources with PVDF and PZT (2011) Smart Mater. Struct., 20, p. 055019; Nam, K.T., Kim, D.W., Yoo, P.J., Chiang, C.Y., Meethong, N., Hammond, P.T., Chiang, Y.M., Belcher, A.M., Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes (2006) Science, 312, pp. 885-888; Lee, Y.J., Yi, H., Kim, W.J., Kang, K., Yun, D.S., Strano, M.S., Ceder, G., Belcher, A.M., Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes (2009) Science, 324, pp. 1051-1055; Mao, C., Liu, A., Cao, B., Virus-based chemical and biological sensing (2009) Angew. Chem. Int. Ed. Engl., 48 (37), pp. 6790-6810; Fukada, E., Yasuda, I., On the piezoelectric effect of bone (1957) J. Phys. Soc. Jpn., 12 (10), pp. 1158-1162; Halperin, C., Mutchnik, S., Agronin, A., Molotskii, M., Urenski, P., Salai, M., Rosenman, G., Piezoelectric effect in human bones studied in nanometer scale (2004) Nano Lett., 4 (7), pp. 1253-1256; Lee, J.S., Yoon, I., Kim, J., Lhee, H., Kim, B., Park, C.B., Self-assembly of semiconducting photoluminescent peptide nanowires in the vapor phase (2011) Angew. Chem. Int. Ed. Engl., 50 (5), pp. 1164-1167; Mitchell, J.C., Harris, J.R., Malo, J., Bath, J., Turberfield, A.J., Self-assembly of chiral DNA nanotubes (2004) J. Am. Chem. Soc., 126 (50), pp. 16342-16343; Schnur, J.M., Lipid tubules: A paradigm for molecularly engineered structures (1993) Science, 262, pp. 1669-1676; Daube, S.S., Arad, T., Ziv, R.B., Cell-free co-synthesis of protein nanoassemblies:tubes, rings, and doughnuts (2007) Nano Lett., 7 (3), pp. 638-641; Gupta, M., Bagaria, A., Mishra, A., Mathur, P., Basu, A., Ramakumar, S., Chauhan, V.S., Self-assembly of a dipeptide-containing conformationally restricted dehydrophenylalanine residue to form ordered nanotubes (2007) Adv. Mater., 19 (6), pp. 858-861; Lee, B.Y., Zhang, J., Zueger, C., Chung, W.J., Yoo, S.Y., Wang, E., Meyer, J., Lee, S.W., Virus-based piezoelectric energy generation (2012) Nat. Nano., 7 (6), pp. 351-356; Bystrov, V.S., Bdikin, I., Heredia, A., Pullar, R.C., Mishina, E., Sigov, A.S., Kholkin, A.L., Piezoelectricity and ferroelectricity in biomaterials: from proteins to self-assembled peptide nanotubes (2012) Piezoelectric Nanomaterials for Biomedical Applications, pp. 187-211. , Eds. G. Ciofani, A. Menciassi, Springer-Verlag, Berlin Heidelberg; Huang, R.L., Wu, S.K., Li, A.T., Li, Z., Integrating interfacial self-assembly and electrostatic complexation at an aqueous interface for capsule synthesis and enzyme immobilization (2014) J. Mater. Chem. A, 2, pp. 1672-1676; Ma, H., Fei, J., Cui, Y., Zhao, J., Wang, A., Li, J., Manipulating assembly of cationic dipeptides using sulfonic azobenzenes (2013) Chem. Commun., 49, pp. 9956-9958; Vauthey, S., Santoso, S., Gong, H.Y., Watson, N., Zhang, S.G., Molecular selfassembly of surfactant-like peptides to form nanotubes and nanovesicles (2002) Proc. Natl. Acad. Sci. USA, 99 (8), pp. 5355-5360; Bong, D.T., Clark, T.D., Granja, J.R., Ghadiri, M.R., Self-assembling organic nanotubes (2001) Angew. Chem. Int. Ed., 40 (6), pp. 988-1011; Cavalli, S., Albericio, F., Kros, A., Amphiphilic peptides and their crossdisciplinary role as building blocks for nanoscience (2010) Chem. Soc. Rev., 39, pp. 241-263; Abramovich, L.A., Reches, M., Sedman, V.L., Allen, S., Tendler, S.J.B., Gazit, E., Thermal and chemical stability of diphenylalanine peptide nanotubes:implications for nanotechnological applications (2006) Langmuir, 22 (3), pp. 1313-1320; Hirata, T., Fujimura, F., Kimura, S., A novel polypseudorotaxane composed of cyclic - as bead component (2007) Chem. Commun., 10, pp. 1023-1025; Huang, R., Wang, Y., Qi, W., Su, R., He, Z., Temperature-induced reversible self-assembly of diphenylalanine peptide and the structural transition from organogel to crystalline nanowires (2014) Nano. Res. Lett., 9, pp. 653-661; Kokkoli, E., Mardilovich, A., Wedekind, A., Rexeisen, E.L., Garg, A., Craig, J.A., Self-assembly and applications of biomimetic and bioactive peptideamphiphiles (2006) Soft Matter., 2, pp. 1015-1024; Kol, N., Abramovich, L.A., Barlam, D., Shneck, R.Z., Gazit, E., Rousso, I., Selfassembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures (2005) Nano Lett., 5 (7), pp. 1343-1346; Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E., Rosenman, G., Strong piezoelectricity in bioinspired peptide nanotubes (2010) ACS Nano, 4 (2), pp. 610-614; Heredia, A., Bdikin, I., Kopyl, S., Mishina, E., Semin, S., Sigov, A., German, K., Kholkin, A.L., Temperature-driven phase transformation in selfassembled diphenylalanine peptide nanotubes (2010) J. Phys. D, 43, p. 462001; Bosne, E.D., Heredia, A., Kopyl, S., Karpinsky, D.V., Pinto, A.G., Kholkin, A.L., Piezoelectric resonators based on self-assembled diphenylalanine microtubes (2013) Appl. Phys. Lett., 102, p. 073504; Bystrov, V.S., Seyedhosseini, E., Kopyl, S., Bdikin, I.K., Kholkin, A.L., Piezoelectricity and ferroelectricity in biomaterials: Molecular modeling and piezoresponse force microscopy measurements (2014) J. Appl. Phys., 116 (6), p. 066803; Mao, C., Solis, D.J., Reiss, B.D., Kottmann, S.T., Sweeney, R.Y., Hayhurst, A., Georgiou, G., Belcher, A.M., Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires (2004) Science, 303, pp. 213-217; Huang, Y., Chiang, C.Y., Lee, S.K., Gao, Y., Hu, E.L., Yoreo, J., Belcher, A.M., Programmable assembly of nanoarchitectures using genetically engineered viruses (2005) Nano Lett., 5 (7), pp. 1429-1434; Park, J.S., Cho, M.K., Lee, E.J., Ahn, K.Y., Lee, K.E., Jung, J.H., Cho, Y., Lee, A.J., A highly sensitive and selective diagnostic assay based on virus nanoparticles (2009) Nat. Nanotechonol., 4, pp. 259-264; Manchester, M., Steinmetz, N.F., (2009) Current Topics in Microbiology and Immunology, , Springer-Verlag, Berlin, Heidelberg; Straus, S., Scott, W., Symmons, M., Marvin, D., On the structures of filamentous bacteriophage Ff (fd, f1, M13) (2008) Eur. Biophys. J., 37 (4), pp. 521-527; Valegard, K., Liljas, L., Fridborg, K., Unge, T., The three-dimensional structure of the bacterial virus MS2 (1990) Nature, 345, pp. 36-41; Kostyuchenko, V.A., Leiman, P.G., Chipman, P.R., Kanamaru, S., van Raaij, M.J., Arisaka, F., Mesyanzhinov, V.V., Rossmann, M.G., Three-dimensional structure of bacteriophage T4 baseplate (2003) Nat. Struct. Biol., 10, pp. 688-693; Lee, C.W., Wood, B.M., Belcher, A.M., Smectic C structures of virus-based films (2003) Langmuir, 19, pp. 1592-1598; Lee, S.W., Belcher, A.M., Virus-based fabrication of micro- and nanofibers using electrospinning (2004) Nano Lett., 4 (3), pp. 387-390; Isakov, D., de Gomes, M.E., Almeida, B., Kholkin, A.L., Zelenovskiy, P., Neradovskiy, M., Shur, V.Y., Energy harvesting from nanofibers of hybrid organic ferroelectric dabcoHReO4 (2014) Appl. Phys. Lett., 104 (3), p. 032907; Ihssen, J., Braun, A., Faccio, G., Schrantz, K.G., Wyss, P.P., Meyer, L.T., Light harvesting proteins for solar fuel generation in bioengineered photoelectrochemical cells (2014) Curr. Protein Peptide Science, 15 (4), pp. 374-384; Harvey, J.M.H., Allakhverdiev, S.I., Najafpour, M.M., Govindjee, Current challenges in photosynthesis: From natural to artificial (2014) Fron. Plant Sci., 5, pp. 232-1; Umena, Y., Kawakami, K., Shen, J.R., Kamiya, N., Crystal structure of oxygenevolving photosystem II at a resolution of 1.9Å (2011) Nature, 473, pp. 55-60; Wasielewski, M.R., Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems (2009) Acc. Chem. Res., 42, pp. 1910-1921; Ryu, J., Kim, J.H., Park, C.B., Photoluminescent peptide nanotubes (2009) Adv. Mater., 21, pp. 1577-1581; Kim, J.H., Lee, M., Lee, J.S., Park, C.B., Self-assembled light-harvesting peptide nanotubes for mimicking natural photosynthesis (2012) Angew. Chem. Int. Ed. Engl., 51 (2), pp. 517-520; Kim, J.H., Nam, D.H., Lee, Y.W., Nam, Y.S., Park, C.B., Self-assembly of metalloporphyrins into light-harvesting peptide nanofiber hydrogels for solar water oxidation (2014) Small, 10 (7), pp. 1272-1277; Nam, Y.S., Magyar, A.P., Lee, D., Kim, J.W., Yun, D.S., Park, H., Pollom, T.S., Jr., Belcher, A.M., Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation (2010) Nat. Nano., 5, pp. 340-344; Jeong, C.K., Kim, I., Park, K.I., Oh, M.H., Paik, H., Hwang, G.T., No, K., Lee, K.J., Virus-directed design of a flexible BaTiO3 nanogenerator (2013) ACS Nano, 7 (12), pp. 11016-11025
Correspondence Address Kholkin, A.L.; Department of Physics, CICECO, University of AveiroPortugal; email: kholkin@ua.pt
Publisher Imperial College Press
ISBN 9781783269877; 9781783269860
Language of Original Document English
Abbreviated Source Title Electr. Act. Mater. for Med. Devices
Source Scopus