References |
Cook-Chennault, K.A., Thambi, N., Sastry, A.M., Powering MEMS portable devices - a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems (2008) Smart Mater. Struct., 17, p. 043001; Vatansever, D., Hadimani, R.L., Shah, T., Siores, E., An investigation of energy harvesting from renewable sources with PVDF and PZT (2011) Smart Mater. Struct., 20, p. 055019; Nam, K.T., Kim, D.W., Yoo, P.J., Chiang, C.Y., Meethong, N., Hammond, P.T., Chiang, Y.M., Belcher, A.M., Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes (2006) Science, 312, pp. 885-888; Lee, Y.J., Yi, H., Kim, W.J., Kang, K., Yun, D.S., Strano, M.S., Ceder, G., Belcher, A.M., Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes (2009) Science, 324, pp. 1051-1055; Mao, C., Liu, A., Cao, B., Virus-based chemical and biological sensing (2009) Angew. Chem. Int. Ed. Engl., 48 (37), pp. 6790-6810; Fukada, E., Yasuda, I., On the piezoelectric effect of bone (1957) J. Phys. Soc. Jpn., 12 (10), pp. 1158-1162; Halperin, C., Mutchnik, S., Agronin, A., Molotskii, M., Urenski, P., Salai, M., Rosenman, G., Piezoelectric effect in human bones studied in nanometer scale (2004) Nano Lett., 4 (7), pp. 1253-1256; Lee, J.S., Yoon, I., Kim, J., Lhee, H., Kim, B., Park, C.B., Self-assembly of semiconducting photoluminescent peptide nanowires in the vapor phase (2011) Angew. Chem. Int. Ed. Engl., 50 (5), pp. 1164-1167; Mitchell, J.C., Harris, J.R., Malo, J., Bath, J., Turberfield, A.J., Self-assembly of chiral DNA nanotubes (2004) J. Am. Chem. Soc., 126 (50), pp. 16342-16343; Schnur, J.M., Lipid tubules: A paradigm for molecularly engineered structures (1993) Science, 262, pp. 1669-1676; Daube, S.S., Arad, T., Ziv, R.B., Cell-free co-synthesis of protein nanoassemblies:tubes, rings, and doughnuts (2007) Nano Lett., 7 (3), pp. 638-641; Gupta, M., Bagaria, A., Mishra, A., Mathur, P., Basu, A., Ramakumar, S., Chauhan, V.S., Self-assembly of a dipeptide-containing conformationally restricted dehydrophenylalanine residue to form ordered nanotubes (2007) Adv. Mater., 19 (6), pp. 858-861; Lee, B.Y., Zhang, J., Zueger, C., Chung, W.J., Yoo, S.Y., Wang, E., Meyer, J., Lee, S.W., Virus-based piezoelectric energy generation (2012) Nat. Nano., 7 (6), pp. 351-356; Bystrov, V.S., Bdikin, I., Heredia, A., Pullar, R.C., Mishina, E., Sigov, A.S., Kholkin, A.L., Piezoelectricity and ferroelectricity in biomaterials: from proteins to self-assembled peptide nanotubes (2012) Piezoelectric Nanomaterials for Biomedical Applications, pp. 187-211. , Eds. G. Ciofani, A. Menciassi, Springer-Verlag, Berlin Heidelberg; Huang, R.L., Wu, S.K., Li, A.T., Li, Z., Integrating interfacial self-assembly and electrostatic complexation at an aqueous interface for capsule synthesis and enzyme immobilization (2014) J. Mater. Chem. A, 2, pp. 1672-1676; Ma, H., Fei, J., Cui, Y., Zhao, J., Wang, A., Li, J., Manipulating assembly of cationic dipeptides using sulfonic azobenzenes (2013) Chem. Commun., 49, pp. 9956-9958; Vauthey, S., Santoso, S., Gong, H.Y., Watson, N., Zhang, S.G., Molecular selfassembly of surfactant-like peptides to form nanotubes and nanovesicles (2002) Proc. Natl. Acad. Sci. USA, 99 (8), pp. 5355-5360; Bong, D.T., Clark, T.D., Granja, J.R., Ghadiri, M.R., Self-assembling organic nanotubes (2001) Angew. Chem. Int. Ed., 40 (6), pp. 988-1011; Cavalli, S., Albericio, F., Kros, A., Amphiphilic peptides and their crossdisciplinary role as building blocks for nanoscience (2010) Chem. Soc. Rev., 39, pp. 241-263; Abramovich, L.A., Reches, M., Sedman, V.L., Allen, S., Tendler, S.J.B., Gazit, E., Thermal and chemical stability of diphenylalanine peptide nanotubes:implications for nanotechnological applications (2006) Langmuir, 22 (3), pp. 1313-1320; Hirata, T., Fujimura, F., Kimura, S., A novel polypseudorotaxane composed of cyclic - as bead component (2007) Chem. Commun., 10, pp. 1023-1025; Huang, R., Wang, Y., Qi, W., Su, R., He, Z., Temperature-induced reversible self-assembly of diphenylalanine peptide and the structural transition from organogel to crystalline nanowires (2014) Nano. Res. Lett., 9, pp. 653-661; Kokkoli, E., Mardilovich, A., Wedekind, A., Rexeisen, E.L., Garg, A., Craig, J.A., Self-assembly and applications of biomimetic and bioactive peptideamphiphiles (2006) Soft Matter., 2, pp. 1015-1024; Kol, N., Abramovich, L.A., Barlam, D., Shneck, R.Z., Gazit, E., Rousso, I., Selfassembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures (2005) Nano Lett., 5 (7), pp. 1343-1346; Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E., Rosenman, G., Strong piezoelectricity in bioinspired peptide nanotubes (2010) ACS Nano, 4 (2), pp. 610-614; Heredia, A., Bdikin, I., Kopyl, S., Mishina, E., Semin, S., Sigov, A., German, K., Kholkin, A.L., Temperature-driven phase transformation in selfassembled diphenylalanine peptide nanotubes (2010) J. Phys. D, 43, p. 462001; Bosne, E.D., Heredia, A., Kopyl, S., Karpinsky, D.V., Pinto, A.G., Kholkin, A.L., Piezoelectric resonators based on self-assembled diphenylalanine microtubes (2013) Appl. Phys. Lett., 102, p. 073504; Bystrov, V.S., Seyedhosseini, E., Kopyl, S., Bdikin, I.K., Kholkin, A.L., Piezoelectricity and ferroelectricity in biomaterials: Molecular modeling and piezoresponse force microscopy measurements (2014) J. Appl. Phys., 116 (6), p. 066803; Mao, C., Solis, D.J., Reiss, B.D., Kottmann, S.T., Sweeney, R.Y., Hayhurst, A., Georgiou, G., Belcher, A.M., Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires (2004) Science, 303, pp. 213-217; Huang, Y., Chiang, C.Y., Lee, S.K., Gao, Y., Hu, E.L., Yoreo, J., Belcher, A.M., Programmable assembly of nanoarchitectures using genetically engineered viruses (2005) Nano Lett., 5 (7), pp. 1429-1434; Park, J.S., Cho, M.K., Lee, E.J., Ahn, K.Y., Lee, K.E., Jung, J.H., Cho, Y., Lee, A.J., A highly sensitive and selective diagnostic assay based on virus nanoparticles (2009) Nat. Nanotechonol., 4, pp. 259-264; Manchester, M., Steinmetz, N.F., (2009) Current Topics in Microbiology and Immunology, , Springer-Verlag, Berlin, Heidelberg; Straus, S., Scott, W., Symmons, M., Marvin, D., On the structures of filamentous bacteriophage Ff (fd, f1, M13) (2008) Eur. Biophys. J., 37 (4), pp. 521-527; Valegard, K., Liljas, L., Fridborg, K., Unge, T., The three-dimensional structure of the bacterial virus MS2 (1990) Nature, 345, pp. 36-41; Kostyuchenko, V.A., Leiman, P.G., Chipman, P.R., Kanamaru, S., van Raaij, M.J., Arisaka, F., Mesyanzhinov, V.V., Rossmann, M.G., Three-dimensional structure of bacteriophage T4 baseplate (2003) Nat. Struct. Biol., 10, pp. 688-693; Lee, C.W., Wood, B.M., Belcher, A.M., Smectic C structures of virus-based films (2003) Langmuir, 19, pp. 1592-1598; Lee, S.W., Belcher, A.M., Virus-based fabrication of micro- and nanofibers using electrospinning (2004) Nano Lett., 4 (3), pp. 387-390; Isakov, D., de Gomes, M.E., Almeida, B., Kholkin, A.L., Zelenovskiy, P., Neradovskiy, M., Shur, V.Y., Energy harvesting from nanofibers of hybrid organic ferroelectric dabcoHReO4 (2014) Appl. Phys. Lett., 104 (3), p. 032907; Ihssen, J., Braun, A., Faccio, G., Schrantz, K.G., Wyss, P.P., Meyer, L.T., Light harvesting proteins for solar fuel generation in bioengineered photoelectrochemical cells (2014) Curr. Protein Peptide Science, 15 (4), pp. 374-384; Harvey, J.M.H., Allakhverdiev, S.I., Najafpour, M.M., Govindjee, Current challenges in photosynthesis: From natural to artificial (2014) Fron. Plant Sci., 5, pp. 232-1; Umena, Y., Kawakami, K., Shen, J.R., Kamiya, N., Crystal structure of oxygenevolving photosystem II at a resolution of 1.9Å (2011) Nature, 473, pp. 55-60; Wasielewski, M.R., Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems (2009) Acc. Chem. Res., 42, pp. 1910-1921; Ryu, J., Kim, J.H., Park, C.B., Photoluminescent peptide nanotubes (2009) Adv. Mater., 21, pp. 1577-1581; Kim, J.H., Lee, M., Lee, J.S., Park, C.B., Self-assembled light-harvesting peptide nanotubes for mimicking natural photosynthesis (2012) Angew. Chem. Int. Ed. Engl., 51 (2), pp. 517-520; Kim, J.H., Nam, D.H., Lee, Y.W., Nam, Y.S., Park, C.B., Self-assembly of metalloporphyrins into light-harvesting peptide nanofiber hydrogels for solar water oxidation (2014) Small, 10 (7), pp. 1272-1277; Nam, Y.S., Magyar, A.P., Lee, D., Kim, J.W., Yun, D.S., Park, H., Pollom, T.S., Jr., Belcher, A.M., Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation (2010) Nat. Nano., 5, pp. 340-344; Jeong, C.K., Kim, I., Park, K.I., Oh, M.H., Paik, H., Hwang, G.T., No, K., Lee, K.J., Virus-directed design of a flexible BaTiO3 nanogenerator (2013) ACS Nano, 7 (12), pp. 11016-11025 |