Ferroelectricity in synthetic biomaterials: Hydroxyapatite and polypeptides / Ivanov M., Kopyl S., Tofail S.A.M., Ryan K., Rodriguez B.J., Shur V.Y., Kholkin A.L. // Electrically Active Materials for Medical Devices. - 2016. - V. , l. . - P. 149-166.

ISSN:
нет данных
Type:
Book Chapter
Abstract:
Ferroelectricity is an important functional property that enables switching of spontaneous polarisation under the application of an external electric field. Ferroelectric phenomena are essential for many organic and biological molecules collectively known as bioferroelectrics. This chapter presents an overview of the main issues of bioferroelectricity in synthetic biomaterials and their manifestation in organic compounds. As a showcase of novel biopiezomaterials, the investigation of hydroxyapatite nanocrystals - a natural form of the major mineral component of bone, and polypeptides, a novel and unique class of self-assembled functional biomaterials, is described in more detail. © 2016 by Imperial College Press.
Author keywords:
Index keywords:
нет данных
DOI:
10.1142/9781783269877_0011
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019952958&doi=10.1142%2f9781783269877_0011&partnerID=40&md5=929d2fc8953dcb2669877a4d1acbf414
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019952958&doi=10.1142%2f9781783269877_0011&partnerID=40&md5=929d2fc8953dcb2669877a4d1acbf414
Affiliations Department of Physics, CICECO, University of Aveiro, Portugal; Department of Physics and Energy, University of Limerick, Ireland; Bernal Institute, University of Limerick, Ireland; School of Physics, University College Dublin, Ireland; Institute of Natural Sciences, Ural Federal University, Russian Federation
References Scott, J.F., Applications of modern ferroelectrics (2007) Science, 315 (5814), pp. 954-959; Lines, M.E., Glass, A.M., (2001) Principles and Applications of Ferroelectrics and Related Materials, , OUP, Oxford; Horiuchi, S., Tokura, Y., Organic ferroelectrics (2008) Nat. Mater., 7, pp. 357-366; Li, J., Liu, Y., Zhang, Y., Cai, H., Xiong, R.G., Molecular ferroelectrics:Where electronics meet biology (2013) Phys. Chem. Chem. Phys., 15 (48), pp. 20786-20796; Valasek, J., Piezoelectric and allied phenomena in Rochelle salt (1921) Phys. Rev., 17 (4), pp. 475-481; Bazhenov, V.A., Konstantinova, V.A., Piezoelectric properties of wood (1951) Doklady Akad. Nauk SSSR, Chem. Abstr., 45, p. 2747; Fukada, E., Yasuda, I., On the piezoelectric effect of bone (1957) J. Phys. Soc. Jpn., 12 (10), pp. 1158-1162; Kawai, H., The piezoelectricity of poly(vinylidene fluoride) (1969) Jpn. J. Appl. Phys., 8 (7), pp. 975-976; Williams, W., Breger, L., Piezoelectricity in tendon and bone (1975) J. Biomech., 8 (6), pp. 407-413; Solomon, A.L., Thiourea, a new ferroelectric (1956) Phys. Rev., 104 (4), p. 1191; Tokura, Y., Koshihara, Y., Iwasa, H., Okamoto, T., Komatsu, T., Koda, T., Iwasawa, N., Saito, G., Domain-wall dynamics in organic charge-transfer compounds with one-dimensional ferroelectricity (1989) Phys. Rev. Lett., 63 (21), pp. 2405-2408; Tayi, A.S., Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes (2012) Nature, 488, pp. 485-489; Torrance, J., Vazquez, J., Mayerle, J., Lee, V., Discovery of a neutral-to-ionic phase transition in organic materials (1981) Phys. Rev. Lett., 46, pp. 253-257; Horiuchi, S., Kagawa, F., Hatahara, K., Kobayashi, K., Kumai, R., Murakami, Y., Tokura, Y., Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles (2012) Nat. Commun., 3, p. 1308; Kundys, B., Lappas, A., Viret, M., Kapustianyk, V., Rudyk, V., Semak, S., Simon, C., Bakaimi, I., Multiferroicity and hydrogen-bond ordering in (C2H5NH3)2CuCl4 featuring dominant ferromagnetic interactions (2010) Phys. Rev. B, 81 (22), p. 224434; Szklarz, P., Bator, G., Pyroelectric properties of tricyclohexylmethanol (TCHM) single crystal (2005) J. Phys. Chem. Solids, 66 (1), pp. 121-125; Lang, S.B., Tofail, S.A.M., Kholkin, A.L., Wojtaś, M., Gregor, M., Gandhi, A.A., Wang, Y., Plecenik, A., Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon (2013) Sci. Rep., 3, p. 2215; Chiatti, F., Corno, M., Ugliengo, P., Stability of the dipolar (001) surface of hydroxyapatite (2012) J. Phys. Chem. C, 116 (10), pp. 6108-6114; Gandhi, A.A., Wojtas, M., Lang, S.B., Kholkin, A.L., Tofail, S.A.M., Piezoelectricity in poled hydroxyapatite ceramics (2014) J. Am. Cer. Soc., 97, pp. 2867-2872; Lemanov, V., Popov, S., Pankova, G., Piezoelectric properties of crystals of some protein aminoacids and their related compounds (2002) Phys. Sol. Stat., 44 (10), pp. 1929-1935; Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E., Rosenman, G., Strong piezoelectricity in bioinspired peptide nanotubes (2010) ACS Nano, 4 (2), pp. 610-614; Heredia, A., Bdikin, I., Kopyl, S., Mishina, E., Semin, S., Sigov, A., German, K., Kholkin, A.L., Temperature-driven phase transformation in self-assembled diphenylalanine peptide nanotubes (2010) J. Phys. D: Appl. Phys., 43 (46), p. 462001; Bdikin, I., Bystrov, V., Kopyl, S., Lopes, R., Delgadillo, I., Gracio, J., Mishina, E., Kholkin, A.L., Evidence of ferroelectricity and phase transition in pressed diphenylalanine peptide nanotubes (2012) Appl. Phys. Lett., 100 (4), p. 043702; Bdikin, I., Bystrov, V., Delgadillo, I., Gracio, J., Kopyl, S., Wojtas, M., Mishina, E., Kholkin, A.L., Polarization switching and patterning in self-assembled peptide tubular structures (2012) J. Appl. Phys., 111 (7), p. 074104; Molotskii, M., Generation of ferroelectric domains in atomic force microscope (2003) J. Appl. Phys., 93 (10), pp. 6234-6237; Liang, Y., Guo, P., Pingali, S.V., Pabit, S., Thiyagarajan, P., Berland, K.M., Lynn, D.G., Light harvesting antenna on an amyloid scaffold (2008) Chem. Comm., 48, pp. 6522-6524; Ryu, J., Lim, S.Y., Park, C.B., Photoluminescent peptide nanotubes (2008) Adv. Mat., 21 (16), pp. 1577-1581; Bosne, E.D., Heredia, A., Kopyl, S., Karpinsky, D.V., Pinto, A.G., Kholkin, A.L., Piezoelectric resonators based on self-assembled diphenylalanine microtubes (2013) Appl. Phys. Lett., 102 (7), p. 073504; Cipriano, T., Knotts, G., Bianchi, R.C., Alves, W.A., Guha, S., (2014) ACS Appl. Mater. Inter., 6 (23), pp. 21408-21415; Li, Q., Jia, Y., Dai, L., Yang, Y., Li, J., Controlled rod nanostructured assembly of diphenylalanine and their optical waveguide properties (2015) ACS Nano, 9 (3), pp. 2689-2695
Correspondence Address Kholkin, A.L.; Department of Physics, CICECO, University of AveiroPortugal; email: kholkin@ua.pt
Publisher Imperial College Press
ISBN 9781783269877; 9781783269860
Language of Original Document English
Abbreviated Source Title Electr. Act. Mater. for Med. Devices
Source Scopus