References |
Scott, J.F., Applications of modern ferroelectrics (2007) Science, 315 (5814), pp. 954-959; Lines, M.E., Glass, A.M., (2001) Principles and Applications of Ferroelectrics and Related Materials, , OUP, Oxford; Horiuchi, S., Tokura, Y., Organic ferroelectrics (2008) Nat. Mater., 7, pp. 357-366; Li, J., Liu, Y., Zhang, Y., Cai, H., Xiong, R.G., Molecular ferroelectrics:Where electronics meet biology (2013) Phys. Chem. Chem. Phys., 15 (48), pp. 20786-20796; Valasek, J., Piezoelectric and allied phenomena in Rochelle salt (1921) Phys. Rev., 17 (4), pp. 475-481; Bazhenov, V.A., Konstantinova, V.A., Piezoelectric properties of wood (1951) Doklady Akad. Nauk SSSR, Chem. Abstr., 45, p. 2747; Fukada, E., Yasuda, I., On the piezoelectric effect of bone (1957) J. Phys. Soc. Jpn., 12 (10), pp. 1158-1162; Kawai, H., The piezoelectricity of poly(vinylidene fluoride) (1969) Jpn. J. Appl. Phys., 8 (7), pp. 975-976; Williams, W., Breger, L., Piezoelectricity in tendon and bone (1975) J. Biomech., 8 (6), pp. 407-413; Solomon, A.L., Thiourea, a new ferroelectric (1956) Phys. Rev., 104 (4), p. 1191; Tokura, Y., Koshihara, Y., Iwasa, H., Okamoto, T., Komatsu, T., Koda, T., Iwasawa, N., Saito, G., Domain-wall dynamics in organic charge-transfer compounds with one-dimensional ferroelectricity (1989) Phys. Rev. Lett., 63 (21), pp. 2405-2408; Tayi, A.S., Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes (2012) Nature, 488, pp. 485-489; Torrance, J., Vazquez, J., Mayerle, J., Lee, V., Discovery of a neutral-to-ionic phase transition in organic materials (1981) Phys. Rev. Lett., 46, pp. 253-257; Horiuchi, S., Kagawa, F., Hatahara, K., Kobayashi, K., Kumai, R., Murakami, Y., Tokura, Y., Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles (2012) Nat. Commun., 3, p. 1308; Kundys, B., Lappas, A., Viret, M., Kapustianyk, V., Rudyk, V., Semak, S., Simon, C., Bakaimi, I., Multiferroicity and hydrogen-bond ordering in (C2H5NH3)2CuCl4 featuring dominant ferromagnetic interactions (2010) Phys. Rev. B, 81 (22), p. 224434; Szklarz, P., Bator, G., Pyroelectric properties of tricyclohexylmethanol (TCHM) single crystal (2005) J. Phys. Chem. Solids, 66 (1), pp. 121-125; Lang, S.B., Tofail, S.A.M., Kholkin, A.L., Wojtaś, M., Gregor, M., Gandhi, A.A., Wang, Y., Plecenik, A., Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon (2013) Sci. Rep., 3, p. 2215; Chiatti, F., Corno, M., Ugliengo, P., Stability of the dipolar (001) surface of hydroxyapatite (2012) J. Phys. Chem. C, 116 (10), pp. 6108-6114; Gandhi, A.A., Wojtas, M., Lang, S.B., Kholkin, A.L., Tofail, S.A.M., Piezoelectricity in poled hydroxyapatite ceramics (2014) J. Am. Cer. Soc., 97, pp. 2867-2872; Lemanov, V., Popov, S., Pankova, G., Piezoelectric properties of crystals of some protein aminoacids and their related compounds (2002) Phys. Sol. Stat., 44 (10), pp. 1929-1935; Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E., Rosenman, G., Strong piezoelectricity in bioinspired peptide nanotubes (2010) ACS Nano, 4 (2), pp. 610-614; Heredia, A., Bdikin, I., Kopyl, S., Mishina, E., Semin, S., Sigov, A., German, K., Kholkin, A.L., Temperature-driven phase transformation in self-assembled diphenylalanine peptide nanotubes (2010) J. Phys. D: Appl. Phys., 43 (46), p. 462001; Bdikin, I., Bystrov, V., Kopyl, S., Lopes, R., Delgadillo, I., Gracio, J., Mishina, E., Kholkin, A.L., Evidence of ferroelectricity and phase transition in pressed diphenylalanine peptide nanotubes (2012) Appl. Phys. Lett., 100 (4), p. 043702; Bdikin, I., Bystrov, V., Delgadillo, I., Gracio, J., Kopyl, S., Wojtas, M., Mishina, E., Kholkin, A.L., Polarization switching and patterning in self-assembled peptide tubular structures (2012) J. Appl. Phys., 111 (7), p. 074104; Molotskii, M., Generation of ferroelectric domains in atomic force microscope (2003) J. Appl. Phys., 93 (10), pp. 6234-6237; Liang, Y., Guo, P., Pingali, S.V., Pabit, S., Thiyagarajan, P., Berland, K.M., Lynn, D.G., Light harvesting antenna on an amyloid scaffold (2008) Chem. Comm., 48, pp. 6522-6524; Ryu, J., Lim, S.Y., Park, C.B., Photoluminescent peptide nanotubes (2008) Adv. Mat., 21 (16), pp. 1577-1581; Bosne, E.D., Heredia, A., Kopyl, S., Karpinsky, D.V., Pinto, A.G., Kholkin, A.L., Piezoelectric resonators based on self-assembled diphenylalanine microtubes (2013) Appl. Phys. Lett., 102 (7), p. 073504; Cipriano, T., Knotts, G., Bianchi, R.C., Alves, W.A., Guha, S., (2014) ACS Appl. Mater. Inter., 6 (23), pp. 21408-21415; Li, Q., Jia, Y., Dai, L., Yang, Y., Li, J., Controlled rod nanostructured assembly of diphenylalanine and their optical waveguide properties (2015) ACS Nano, 9 (3), pp. 2689-2695 |