References |
Arpesella, C., A low background counting facility at Laboratori Nazionali del Gran Sasso (1996) Applied Radiation and Isotopes, 47, pp. 991-996; Bhandari, N., Mathew, K.J., Rao, M.N., Herpers, U., Bremer, K., Vogt, S., Wölfli, W., Lange, H.-J., Depth and size dependence of cosmogenic nuclide production rates in stony meteoroids (1993) Geochimica Cosmochimica Acta, 57, pp. 2361-2375; Bhandari, N., Murty, S.V.S., Shukla, P.N., Shukla, A.D., Mahajan, R.R., Sarin, M.M., Srinivasan, G., Bischoff, A., Itawa Bhopji (L3-5) chondrite regolith breccia: Fall, classification and cosmogenic records (2002) Meteoritics & Planetary Science, 37, pp. 549-563; Bischoff, A., Schultz, L., Abundance and meaning of regolith breccias among meteorites (2004) Proceedings, 67th Annual Meeting of the Meteoritical Society, , ,, Rio de Janeiro, Brazil, 2–6. August, 2004, abstract 5118; Britt, D.T., Consolmagno, G.J., Stony meteorite porosities and densities: A review of the data through 2001 (2003) Meteoritics & Planetary Science, 38, pp. 1161-1180; Busemann, H., Baur, H., Wieler, R., Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed-system stepped etching (2000) Meteoritics & Planetary Science, 35, pp. 949-973; Consolmagno, G., Britt, D., The density and porosity of meteorites from the Vatican collection (1998) Meteoritics & Planetary Science, 33, pp. 1231-1241; Consolmagno, G., Britt, D., Macke, R., The significance of meteorite density and porosity (2008) Chemie der Erde, 68, pp. 1-29; Dalcher, N., Caffee, M.W., Nishiizumi, K., Welten, K.C., Vogel, N., Wieler, R., Leya, I., Calibration of cosmogenic noble gas production in ordinary chondrites based on 36Cl-36Ar ages. Part 1: Refined produced rates for cosmogenic 21Ne and 38Ar (2013) Meteoritics & Planetary Science, 48, pp. 1841-1862; Dmitriev, V., Lupovka, V., Gritsevich, M., Orbit determination based on meteor observations using numerical integration of equations of motion (2015) Planetary and Space Science, 117, pp. 223-235; Eberhardt, P., Geiss, J., Lutz, H., Neutrons in meteorites (1963) Earth science and meteoritics, pp. 143-168. , In, edited by, Geiss J., Goldberg E. D., Amsterdam, North Holland Publishing Company; Eberhardt, P., Eugster, O., Geiss, J., Marti, K., Rare gas measurements in 30 stone Meteorites (1966) Zeitschrift für Naturforschung Teil A, 21, p. 414; Evans, J.C., Reeves, J.H., Rancitelli, L.A., Bogard, D.D., Cosmogenic nuclides in recently fallen meteorites–Evidence for galactic cosmic ray variations during the period 1967–1978 (1982) Journal of Geophysical Research, 87, pp. 5577-5587; Evans, J.C., Reeves, J.H., Reedy, R.C., Solar cosmic ray produced radionuclides in the Salem meteorite (1987) 18th Lunar and Planetary Science Conference, pp. 271-272; Gattacceca, J., Eisenlohr, P., Rochette, P., Calibration of in situ magnetic susceptibility measurements (2004) Geophysical Journal International, 158, pp. 42-49; Gattacceca, J., Rochette, P., Lagroix, F., Mathé, P.-E., Zanda, B., Low temperature magnetic transition of chromite in ordinary chondrites (2011) Geophysical Research Letters, 38, p. L10203; Goldstein, J.I., Yang, J., Kotula, P.G., Michael, J.R., Scott, E.R.D., Thermal histories of IVA iron meteorites from transmission microscopy of the cloudy zone microstructure (2009) Meteoritics & Planetary Science, 44, pp. 343-358; Graf, T., Baur, H., Signer, P., A model for the production of cosmogenic nuclides in chondrites (1990) Geochimica et Cosmochimica Acta, 54, pp. 2521-2534; Gritsevich, M.I., The Pribram, Lost City, Innisfree, and Neuschwanstein falls: An analysis of the atmospheric trajectories (2008) Solar System Research, 42, pp. 372-390; Gritsevich, M.I., Determination of parameters of meteor bodies based on flight observational data (2009) Advances in Space Research, 44, pp. 323-334; Gritsevich, M.I., Stulov, V.P., Turchak, L.I., Consequences for collisions of natural cosmic bodies with the earth atmosphere and surface (2012) Cosmic Research, 50, pp. 56-64; Gritsevich, M., Lyytinen, E., Kohout, T., Moilanen, J., Midtskogen, S., Kruglikov, N., Ischenko, A., Lahtinen, P., Analysis of the bright fireball over Kola peninsula on April 19, 2014 followed by successful meteorite recovery campaign (2014) Meteoritics & Planetary Science, 49, p. A134; Gritsevich, M., Lyytinen, E., Moilanen, J., Kohout, T., Dmitriev, V., Lupovka, V., Midtskogen, V., Larionov, M., First meteorite recovery based on observations by the Finnish Fireball Network (2014) Proceedings, International meteor conference, pp. 162-169. , In, edited by, Rault J.-L., Roggemans P., Giron, France, International Meteor Organization; Grokhovsky, V.I., The structure peculiarities of taenite particles in the Okhansk H4 meteorite (1988) Meteoritika, 47, pp. 57-60. , (In Russian); Hashizume, K., Sugiura, N., Nitrogen isotopes in bulk ordinary chondrites (1995) Geochimica et Cosmochimica Acta, 59, pp. 4057-4069; Hopp, J., Trieloff, M., Ott, U., Korochantseva, E.V., Buykin, A.I., Chronology of the enstatite chondrite parent bodies (2014) Meteoritics & Planetary Science, 49, pp. 358-372; Huss, G.R., Rubin, A.E., Grossman, J.N., Thermal metamorphism in chondrites (2006) Meteorites and the early solar system II, pp. 567-586. , In, edited by, Lauretta D. S., McSween H. Y. Jr, Tucson, Arizona, University of Arizona Press; Jarosewich, E., Chemical analyses of metorites: A compilation of stony and iron metorite analyses (1990) Meteoritics, 25, pp. 323-337; Kohman, T.P., Bender, M.L., Nuclide production by cosmic rays in meteorites and on the Moon (1967) High-energy nuclear reactions in astrophysics–a collection of articles, pp. 169-245. , In, edited by, Shen B. S. P., Benjamin W. A., New York, Science; Leya, I., Masarik, J., Cosmogenic nuclides in stony meteorites revisited (2009) Meteoritics & Planetary Science, 44, pp. 1061-1086; Ludwig, K.R., (2008) Isoplot 3.70: A geochronological toolkit for Microsoft Excel, p. 76. , Berkeley, California, Berkeley Geochronology Center Special Publication 4, p; Ludwig, K.R., Titterington, D.M., Calculation of 230Th/U isochrons, ages, and errors (1994) Geochimica et Cosmochimica Acta, 58, pp. 5031-5042; Lyytinen, E., Gritsevich, M., A flexible fireball entry track calculation program (2013) Proceedings, International meteor conference, La Palma, Canary Islands, Spain, 20–23. September 2012, pp. 155-167. , In, edited by, Gyssens M., Roggemans P., Hove, Belgium, International Meteor Organization; Lyytinen, E., Gritsevich, M., Implications of the atmospheric density profile in the processing of fireball observations (2016) Planetary and Space Science, 120, pp. 35-42; Macke, R.J., Britt, D.T., Consolmagno, G.J., Analysis of systematic error in “bead method” measurements of meteorite bulk volume and density (2010) Planetary and Space Science, 58, pp. 421-426; Mahajan, R.R., Lunar meteorite Yamato-983885: Noble gases, nitrogen and cosmic ray exposure history (2015) Planetary and Space Science, 117, pp. 24-34; Mahajan, R.R., Varela, M.E., Joron, J.L., Santa Lucia (2008) (L6) chondrite, a resent fall: Composition, noble gases, nitrogen and cosmic ray exposure are (2016) Earth, Moon, and Planets, 117, pp. 65-76; Maksimova, A.A., Chukin, A.V., Oshtrakh, M.I., Revealing of the minor iron-bearing phases in the Mössbauer spectra of chelyabinsk LL5 ordinary chondrite fragment (2016) Proceedings, International conference “Mössbauer spectroscopy in materials science” 2016, , In, 23–27. May 2016, Liptovský Ján, Slovakia, edited by, Tuček J., Miglierini M., AIP Conference Proceedings, Melville, New York, AIP Publishing; Maksimova, A.A., Klencsár, Z., Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Kuzmann, E., Homonnay, Z., Semionkin, V.A., Mössbauer parameters of ordinary chondrites influenced by the fit accuracy of the troilite component: An example of Chelyabinsk LL5 meteorite (2016) Hyperfine Interactions, 237, p. 33; Maksimova, A.A., Oshtrakh, M.I., Grokhovsky, V.I., Petrova, E.V., Semionkin, V.A., Mössbauer spectroscopy of H, L and LL ordinary chondrites (2016) Hyperfine Interactions, 237, p. 134; Maksimova, A.A., Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A., Comparison of iron-bearing minerals in ordinary chondrites from H, L and LL groups using Mössbauer spectroscopy with a high velocity resolution (2017) Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 172, pp. 65-76; Marti, K., Graf, T., Cosmic ray exposure history of ordinary chondrites (1992) Annual Reviews of Earth and Planetary Science, 20, pp. 221-243; Mathew, K.J., Murty, S.V.S., Cosmic ray produced nitrogen in extra terrestrial matter (1993) Proceeding of Indian Academy of Sciences (Earth and Planetary Science), 102, pp. 415-437; McSween, H.Y., Jr., Bennett, M.E., III, Jarosewich, E., The mineralogy of ordinary chondrites and implications for asteroid spectrophotometry (1991) Icarus, 90, pp. 107-116; Meier, M.M.M., Welten, K.C., Riebe, M.E.I., Caffee, M.W., Gritsevich, M., Maden, C., Busemann, H., Park Forest (L5) and the asteroidal source of shocked L Chondrites (2017) Meteoritics & Planetary Science; Moreno-Ibáñez, M., Gritsevich, M., Trigo-Rodríguez, J.M., New methodology to determine the terminal height of a fireball (2015) Icarus, 250, pp. 544-552; Nishiizumi, K., Preparation of 26Al AMS standards (2004) Nuclear Instruments and Methods in Physics Research, B223–224, pp. 388-392; Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., McAninch, J., Absolute calibration of 10Be AMS standards (2007) Nuclear Instruments and Methods in Physics Research, B258, pp. 403-413; Nishiizumi, K., Caffee, M.W., Hamajima, Y., Reedy, R.C., Welten, K.C., Exposure history of the Sutter's Mill carbonaceous chondrite (2014) Meteoritics & Planetary Science, 49, pp. 2056-2063; Oshtrakh, M.I., Semionkin, V.A., Mössbauer spectroscopy with a high velocity resolution: Advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research (2013) Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 100, pp. 78-87; Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A., A study of ordinary chondrites by Mössbauer spectroscopy with high-velocity resolution (2008) Meteoritics & Planetary Science, 43, pp. 941-958; Oshtrakh, M.I., Semionkin, V.A., Milder, O.B., Novikov, E.G., Mössbauer spectroscopy with high velocity resolution: An increase of analytical possibilities in biomedical research (2009) Journal of Radioanalitical and Nuclear Chemistry, 281, pp. 63-67; Oshtrakh, M.I., Maksimova, A.A., Grokhovsky, V.I., Petrova, E.V., Semionkin, V.A., The 57Fe hyperfine interactions in the iron-bearing phases in some LL ordinary chondrites (2016) Hyperfine Interactions, 237, p. 138; Renne, P.R., Balco, G., Ludwig, K.R., Mundil, R., Min, K., Reply to the comment by W. H. Schwarz et al. on “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by Paul R. Renne et al. (2010) (2011) Geochimica et Cosmochimica Acta, 75, pp. 5097-5100; Rochette, P., Sagnotti, L., Bourot-Denise, M., Consolmagno, G., Folco, L., Gattacceca, J., Osete, M.L., Pesonen, L.J., Magnetic classification of stony meteorites: 1. Ordinary chondrites (2003) Meteoritics & Planetary Science, 38, pp. 251-268; Schwarz, W.H., Trieloff, M., Intercalibration of 40Ar-39Ar age standards NL-25, HB3gr hornblende, GA1550, SB-3, HD-B1 biotite and BMus/2 muscovite (2007) Chemical Geology, 242, pp. 218-231; Schwarz, W.H., Kossert, K., Trieloff, M., Hopp, J., Comment on the “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by Paul R. Renne et al. (2010) (2011) Geochimica et Cosmochimica Acta, 75, pp. 5094-5096; Scott, E.R.D., Krot, T.V., Goldstein, J.I., Wakita, S., Thermal and impact history of the H chondrite parent asteroid during metamorphism: Constraints from metallic Fe-Ni (2014) Geochimica et Cosmochimica Acta, 136, pp. 13-37; Semionkin, V.A., Oshtrakh, M.I., Milder, O.B., Novikov, E.G., A high velocity resolution Mössbauer spectrometric system for biomedical research (2010) Bulletin of the Russian Academy of Sciences: Physics, 74, pp. 416-420; Sharma, P., Kubik, P.W., Fehn, U., Gove, G.E., Nishiizumi, K., Elmore, D., Development of 36Cl standards for AMS (1990) Nuclear Instruments and Methods, B52, pp. 410-415; Sharma, P., Bourgeois, M., Elmore, D., Granger, D., Lipschutz, M.E., Ma, X., Miller, T., Vogt, S., PRIME lab AMS performance, upgrades and re-search applications (2000) Nuclear Instruments and Methods, B172, pp. 112-123; Spergel, M.S., Reedy, R.C., Lazareth, O.W., Levy, P.W., Slatest, L.A., Cosmogenic neutron-capture-produced nucleides in stony meteorites (1986) Journal of Geophysical Research, 91, pp. D483-D494. , 16th Proceedings of the Lunar and Planetary Science Conference., (Suppl); Steiger, R.H., Jäger, E., Subcomission on geochronology: Convention on the use of decay constants in geo- and cosmochronology (1977) Earth and Planetary Science Letters, 6, pp. 359-362; Stöffler, D., Keil, K., Scott, E.R.D., Shock metamorphism of ordinary chondrites (1991) Geochimica Cosmochimica Acta, 55, pp. 3845-3867; Sugiura, N., Kiyota, K., Hashizume, K., Nitrogen components in primitive ordinary chondrites (1998) Meteoritics & Planetary Science, 33, pp. 463-482; Trieloff, M., Jessberger, E.K., Herrwerth, I., Hopp, J., Fiéni, C., Ghélis, M., Bourot-Denis, M., Pellas, P., Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry (2003) Nature, 422, pp. 502-506; Trigo-Rodríguez, J.M., Lyytinen, E., Gritsevich, M., Moreno-Ibáñez, M., Bottke, W.F., Williams, I., Lupovka, V., Grokhovsky, V., Orbit and dynamic origin of the recently recovered Annama's H5 chondrite (2015) Monthly Notices of the Royal Astronomical Society, 449, pp. 2119-2127; Wasson, J.T., Kallemeyn, G.W., Compositions of chondrites (1988) Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 325, pp. 535-544; Welten, K.C., Caffee, M.W., Hillegonds, D.J., McCoy, T.J., Masarik, J., Nishiizumi, K., Cosmogenic radionuclides in L5 and LL5 chondrites from Queen Alexandra Range, Antarctica: Identification of a large L/LL5 chondrite shower with a pre-atmospheric mass of ~50 metric tons (2011) Meteoritics & Planetary Science, 46, pp. 177-198; Xie, X., Minitti, M.E., Chen, M., Mao, H.K., Wang, D., Shu, J., Fei, Y., Natural high-pressure polymorph of merrillite in the shock veins of the Suizhou meteorite (2002) Geochimica et Cosmochimica Acta, 66, pp. 2439-2444 |