Annama H chondrite—Mineralogy, physical properties, cosmic ray exposure, and parent body history / Kohout T., Haloda J., Halodová P., Meier M.M.M., Maden C., Busemann H., Laubenstein M., Caffee M.W., Welten K.C., Hopp J., Trieloff M., Mahajan R.R., Naik S., Trigo-Rodriguez J.M., Moyano-Cambero C.E., Oshtrakh M.I., Maksimova A.A., Chukin A.V., Semionkin V.A., Karabanalov M.S., Felner I., Petrova E.V., Brusnitsyna E.V., Grokhovsky V.I., Yakovlev G.A., Gritsevich M., Lyytinen E., Moilanen J., Krugl

ISSN:
10869379
Type:
Article
Abstract:
The fall of the Annama meteorite occurred early morning (local time) on April 19, 2014 on the Kola Peninsula (Russia). Based on mineralogy and physical properties, Annama is a typical H chondrite. It has a high Ar-Ar age of 4.4 Ga. Its cosmic ray exposure history is atypical as it is not part of the large group of H chondrites with a prominent 7–8 Ma peak in the exposure age histograms. Instead, its exposure age is within uncertainty of a smaller peak at 30 ± 4 Ma. The results from short-lived radionuclides are compatible with an atmospheric pre-entry radius of 30–40 cm. However, based on noble gas and cosmogenic radionuclide data, Annama must have been part of a larger body (radius >65 cm) for a large part of its cosmic ray exposure history. The 10Be concentration indicates a recent (3–5 Ma) breakup which may be responsible for the Annama parent body size reduction to 30–35 cm pre-entry radius. © The Meteoritical Society, 2017.
Author keywords:
Index keywords:
нет данных
DOI:
10.1111/maps.12871
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026678259&doi=10.1111%2fmaps.12871&partnerID=40&md5=dca98e1f5fc36c5a0408ba23921f2702
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026678259&doi=10.1111%2fmaps.12871&partnerID=40&md5=dca98e1f5fc36c5a0408ba23921f2702
Affiliations Department of Physics, University of Helsinki, Finland; Institute of Geology, The Czech Academy of Sciences, Praha, Czech Republic; Finnish Fireball Network, Finland; Czech Geological Survey, Prague, Czech Republic; Institute of Geochemistry and Petrology, ETH Zurich, Zurich, Switzerland; Laboratori Nazionali del Gran Sasso, Istituto Nazionale di Fisica Nucleare, Via G. Acitelli 22, Assergi (AQ), Italy; Department of Physics and Astronomy, Purdue University, West Lafayette, IN, United States; Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, United States; Space Sciences Laboratory, University of California, Berkeley, CA, United States; Institut für Geowissenschaften, Universität Heidelberg, Im Neuenheimer Feld 234-236, Heidelberg, Germany; Klaus-Tschira-Labor für Kosmochemie, Im Neuenheimer Feld 234-236, Heidelberg, Germany; Physical Research Laboratory, Ahmedabad, India; Institute of Space Sciences (CSIC-IEEC), Meteorites, Minor Bodies and Planetary Sciences Group, Campus UAB Bellaterra, c/Can Magrans s/n, Cerdanyola del Vallès, Barcelona, Spain; Institute of Physics and Technology, Ural Federal University, Ekaterinburg, Russian Federation; Institute of Material Science and Metallurgy, Ural Federal University, Ekaterinburg, Russian Federation; Racah Institute of Physics, The Hebrew University, Jerusalem, Israel; Dorodnicyn Computing Centre, Federal Research Center Computer Science and Control of the Russian Academy of Sciences, Moscow, Russian Federation; Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Russian Federation
Funding Details KTS, Klaus Tschira Stiftung; 14-08-00204, RFBR, Russian Foundation for Basic Research; 1514, Minobrnauka, Ministry of Education and Science of the Russian Federation; 16-05-00004, RFBR, Russian Foundation for Basic Research; 16-07-01072, RFBR, Russian Foundation for Basic Research; 16-32-00151, RFBR, Russian Foundation for Basic Research; 2085, Minobrnauka, Ministry of Education and Science of the Russian Federation; 257487, Academy of Finland; 260027, Academy of Finland; 293975, Academy of Finland; RVO67985831, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy
Funding Text The work was supported by the Academy of Finland projects nos. 257487, 260027, and 293975. Institute of Geology, the Czech Academy of Sciences is supported by Ministry of Education, Youth and Sports project no. RVO67985831. M. G. acknowledges support from the ERC Advanced Grant no. 320773, and the Russian Foundation for Basic Research (RFBR), projects nos. 14-08-00204, 16-05-00004, and 16-07-01072. Research at the Ural Federal University is supported in part by the Ministry of Education and Science of the Russian Federation (basic financing for the projects nos. 2085 [M. I. O.] and 1514 [V. I. G.] in 2016 and financing for the project no. 1959 [M.I.O., A.A.M., A.V.C., and V.A.S.] in 2017) and the Act 211 of the Government of the Russian Federation, agreement no. 02.A03.21.0006. Contribution to the study from A. A. M. was funded by the RFBR according to the research project no. 16-32-00151 mol_a. M. M. was supported by an SNSF Ambizione grant (no. PZ00P2_154874). J. H. and M. T. acknowledge support by Klaus Tschira foundation R. R. M. thanks support from Department of Space, Govt. of India. J.M.T-R, and C.E.M-C received finantial support from the Spanish Ministry (research project AYA2015-67175-P). The authors acknowledge being a part of the network supported by the COST Action TD1403 “Big Data Era in Sky and Earth Observation” and TD1308 “ORIGINS.”
References Arpesella, C., A low background counting facility at Laboratori Nazionali del Gran Sasso (1996) Applied Radiation and Isotopes, 47, pp. 991-996; Bhandari, N., Mathew, K.J., Rao, M.N., Herpers, U., Bremer, K., Vogt, S., Wölfli, W., Lange, H.-J., Depth and size dependence of cosmogenic nuclide production rates in stony meteoroids (1993) Geochimica Cosmochimica Acta, 57, pp. 2361-2375; Bhandari, N., Murty, S.V.S., Shukla, P.N., Shukla, A.D., Mahajan, R.R., Sarin, M.M., Srinivasan, G., Bischoff, A., Itawa Bhopji (L3-5) chondrite regolith breccia: Fall, classification and cosmogenic records (2002) Meteoritics & Planetary Science, 37, pp. 549-563; Bischoff, A., Schultz, L., Abundance and meaning of regolith breccias among meteorites (2004) Proceedings, 67th Annual Meeting of the Meteoritical Society, , ,, Rio de Janeiro, Brazil, 2–6. August, 2004, abstract 5118; Britt, D.T., Consolmagno, G.J., Stony meteorite porosities and densities: A review of the data through 2001 (2003) Meteoritics & Planetary Science, 38, pp. 1161-1180; Busemann, H., Baur, H., Wieler, R., Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed-system stepped etching (2000) Meteoritics & Planetary Science, 35, pp. 949-973; Consolmagno, G., Britt, D., The density and porosity of meteorites from the Vatican collection (1998) Meteoritics & Planetary Science, 33, pp. 1231-1241; Consolmagno, G., Britt, D., Macke, R., The significance of meteorite density and porosity (2008) Chemie der Erde, 68, pp. 1-29; Dalcher, N., Caffee, M.W., Nishiizumi, K., Welten, K.C., Vogel, N., Wieler, R., Leya, I., Calibration of cosmogenic noble gas production in ordinary chondrites based on 36Cl-36Ar ages. Part 1: Refined produced rates for cosmogenic 21Ne and 38Ar (2013) Meteoritics & Planetary Science, 48, pp. 1841-1862; Dmitriev, V., Lupovka, V., Gritsevich, M., Orbit determination based on meteor observations using numerical integration of equations of motion (2015) Planetary and Space Science, 117, pp. 223-235; Eberhardt, P., Geiss, J., Lutz, H., Neutrons in meteorites (1963) Earth science and meteoritics, pp. 143-168. , In, edited by, Geiss J., Goldberg E. D., Amsterdam, North Holland Publishing Company; Eberhardt, P., Eugster, O., Geiss, J., Marti, K., Rare gas measurements in 30 stone Meteorites (1966) Zeitschrift für Naturforschung Teil A, 21, p. 414; Evans, J.C., Reeves, J.H., Rancitelli, L.A., Bogard, D.D., Cosmogenic nuclides in recently fallen meteorites–Evidence for galactic cosmic ray variations during the period 1967–1978 (1982) Journal of Geophysical Research, 87, pp. 5577-5587; Evans, J.C., Reeves, J.H., Reedy, R.C., Solar cosmic ray produced radionuclides in the Salem meteorite (1987) 18th Lunar and Planetary Science Conference, pp. 271-272; Gattacceca, J., Eisenlohr, P., Rochette, P., Calibration of in situ magnetic susceptibility measurements (2004) Geophysical Journal International, 158, pp. 42-49; Gattacceca, J., Rochette, P., Lagroix, F., Mathé, P.-E., Zanda, B., Low temperature magnetic transition of chromite in ordinary chondrites (2011) Geophysical Research Letters, 38, p. L10203; Goldstein, J.I., Yang, J., Kotula, P.G., Michael, J.R., Scott, E.R.D., Thermal histories of IVA iron meteorites from transmission microscopy of the cloudy zone microstructure (2009) Meteoritics & Planetary Science, 44, pp. 343-358; Graf, T., Baur, H., Signer, P., A model for the production of cosmogenic nuclides in chondrites (1990) Geochimica et Cosmochimica Acta, 54, pp. 2521-2534; Gritsevich, M.I., The Pribram, Lost City, Innisfree, and Neuschwanstein falls: An analysis of the atmospheric trajectories (2008) Solar System Research, 42, pp. 372-390; Gritsevich, M.I., Determination of parameters of meteor bodies based on flight observational data (2009) Advances in Space Research, 44, pp. 323-334; Gritsevich, M.I., Stulov, V.P., Turchak, L.I., Consequences for collisions of natural cosmic bodies with the earth atmosphere and surface (2012) Cosmic Research, 50, pp. 56-64; Gritsevich, M., Lyytinen, E., Kohout, T., Moilanen, J., Midtskogen, S., Kruglikov, N., Ischenko, A., Lahtinen, P., Analysis of the bright fireball over Kola peninsula on April 19, 2014 followed by successful meteorite recovery campaign (2014) Meteoritics & Planetary Science, 49, p. A134; Gritsevich, M., Lyytinen, E., Moilanen, J., Kohout, T., Dmitriev, V., Lupovka, V., Midtskogen, V., Larionov, M., First meteorite recovery based on observations by the Finnish Fireball Network (2014) Proceedings, International meteor conference, pp. 162-169. , In, edited by, Rault J.-L., Roggemans P., Giron, France, International Meteor Organization; Grokhovsky, V.I., The structure peculiarities of taenite particles in the Okhansk H4 meteorite (1988) Meteoritika, 47, pp. 57-60. , (In Russian); Hashizume, K., Sugiura, N., Nitrogen isotopes in bulk ordinary chondrites (1995) Geochimica et Cosmochimica Acta, 59, pp. 4057-4069; Hopp, J., Trieloff, M., Ott, U., Korochantseva, E.V., Buykin, A.I., Chronology of the enstatite chondrite parent bodies (2014) Meteoritics & Planetary Science, 49, pp. 358-372; Huss, G.R., Rubin, A.E., Grossman, J.N., Thermal metamorphism in chondrites (2006) Meteorites and the early solar system II, pp. 567-586. , In, edited by, Lauretta D. S., McSween H. Y. Jr, Tucson, Arizona, University of Arizona Press; Jarosewich, E., Chemical analyses of metorites: A compilation of stony and iron metorite analyses (1990) Meteoritics, 25, pp. 323-337; Kohman, T.P., Bender, M.L., Nuclide production by cosmic rays in meteorites and on the Moon (1967) High-energy nuclear reactions in astrophysics–a collection of articles, pp. 169-245. , In, edited by, Shen B. S. P., Benjamin W. A., New York, Science; Leya, I., Masarik, J., Cosmogenic nuclides in stony meteorites revisited (2009) Meteoritics & Planetary Science, 44, pp. 1061-1086; Ludwig, K.R., (2008) Isoplot 3.70: A geochronological toolkit for Microsoft Excel, p. 76. , Berkeley, California, Berkeley Geochronology Center Special Publication 4, p; Ludwig, K.R., Titterington, D.M., Calculation of 230Th/U isochrons, ages, and errors (1994) Geochimica et Cosmochimica Acta, 58, pp. 5031-5042; Lyytinen, E., Gritsevich, M., A flexible fireball entry track calculation program (2013) Proceedings, International meteor conference, La Palma, Canary Islands, Spain, 20–23. September 2012, pp. 155-167. , In, edited by, Gyssens M., Roggemans P., Hove, Belgium, International Meteor Organization; Lyytinen, E., Gritsevich, M., Implications of the atmospheric density profile in the processing of fireball observations (2016) Planetary and Space Science, 120, pp. 35-42; Macke, R.J., Britt, D.T., Consolmagno, G.J., Analysis of systematic error in “bead method” measurements of meteorite bulk volume and density (2010) Planetary and Space Science, 58, pp. 421-426; Mahajan, R.R., Lunar meteorite Yamato-983885: Noble gases, nitrogen and cosmic ray exposure history (2015) Planetary and Space Science, 117, pp. 24-34; Mahajan, R.R., Varela, M.E., Joron, J.L., Santa Lucia (2008) (L6) chondrite, a resent fall: Composition, noble gases, nitrogen and cosmic ray exposure are (2016) Earth, Moon, and Planets, 117, pp. 65-76; Maksimova, A.A., Chukin, A.V., Oshtrakh, M.I., Revealing of the minor iron-bearing phases in the Mössbauer spectra of chelyabinsk LL5 ordinary chondrite fragment (2016) Proceedings, International conference “Mössbauer spectroscopy in materials science” 2016, , In, 23–27. May 2016, Liptovský Ján, Slovakia, edited by, Tuček J., Miglierini M., AIP Conference Proceedings, Melville, New York, AIP Publishing; Maksimova, A.A., Klencsár, Z., Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Kuzmann, E., Homonnay, Z., Semionkin, V.A., Mössbauer parameters of ordinary chondrites influenced by the fit accuracy of the troilite component: An example of Chelyabinsk LL5 meteorite (2016) Hyperfine Interactions, 237, p. 33; Maksimova, A.A., Oshtrakh, M.I., Grokhovsky, V.I., Petrova, E.V., Semionkin, V.A., Mössbauer spectroscopy of H, L and LL ordinary chondrites (2016) Hyperfine Interactions, 237, p. 134; Maksimova, A.A., Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A., Comparison of iron-bearing minerals in ordinary chondrites from H, L and LL groups using Mössbauer spectroscopy with a high velocity resolution (2017) Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 172, pp. 65-76; Marti, K., Graf, T., Cosmic ray exposure history of ordinary chondrites (1992) Annual Reviews of Earth and Planetary Science, 20, pp. 221-243; Mathew, K.J., Murty, S.V.S., Cosmic ray produced nitrogen in extra terrestrial matter (1993) Proceeding of Indian Academy of Sciences (Earth and Planetary Science), 102, pp. 415-437; McSween, H.Y., Jr., Bennett, M.E., III, Jarosewich, E., The mineralogy of ordinary chondrites and implications for asteroid spectrophotometry (1991) Icarus, 90, pp. 107-116; Meier, M.M.M., Welten, K.C., Riebe, M.E.I., Caffee, M.W., Gritsevich, M., Maden, C., Busemann, H., Park Forest (L5) and the asteroidal source of shocked L Chondrites (2017) Meteoritics & Planetary Science; Moreno-Ibáñez, M., Gritsevich, M., Trigo-Rodríguez, J.M., New methodology to determine the terminal height of a fireball (2015) Icarus, 250, pp. 544-552; Nishiizumi, K., Preparation of 26Al AMS standards (2004) Nuclear Instruments and Methods in Physics Research, B223–224, pp. 388-392; Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., McAninch, J., Absolute calibration of 10Be AMS standards (2007) Nuclear Instruments and Methods in Physics Research, B258, pp. 403-413; Nishiizumi, K., Caffee, M.W., Hamajima, Y., Reedy, R.C., Welten, K.C., Exposure history of the Sutter's Mill carbonaceous chondrite (2014) Meteoritics & Planetary Science, 49, pp. 2056-2063; Oshtrakh, M.I., Semionkin, V.A., Mössbauer spectroscopy with a high velocity resolution: Advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research (2013) Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 100, pp. 78-87; Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A., A study of ordinary chondrites by Mössbauer spectroscopy with high-velocity resolution (2008) Meteoritics & Planetary Science, 43, pp. 941-958; Oshtrakh, M.I., Semionkin, V.A., Milder, O.B., Novikov, E.G., Mössbauer spectroscopy with high velocity resolution: An increase of analytical possibilities in biomedical research (2009) Journal of Radioanalitical and Nuclear Chemistry, 281, pp. 63-67; Oshtrakh, M.I., Maksimova, A.A., Grokhovsky, V.I., Petrova, E.V., Semionkin, V.A., The 57Fe hyperfine interactions in the iron-bearing phases in some LL ordinary chondrites (2016) Hyperfine Interactions, 237, p. 138; Renne, P.R., Balco, G., Ludwig, K.R., Mundil, R., Min, K., Reply to the comment by W. H. Schwarz et al. on “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by Paul R. Renne et al. (2010) (2011) Geochimica et Cosmochimica Acta, 75, pp. 5097-5100; Rochette, P., Sagnotti, L., Bourot-Denise, M., Consolmagno, G., Folco, L., Gattacceca, J., Osete, M.L., Pesonen, L.J., Magnetic classification of stony meteorites: 1. Ordinary chondrites (2003) Meteoritics & Planetary Science, 38, pp. 251-268; Schwarz, W.H., Trieloff, M., Intercalibration of 40Ar-39Ar age standards NL-25, HB3gr hornblende, GA1550, SB-3, HD-B1 biotite and BMus/2 muscovite (2007) Chemical Geology, 242, pp. 218-231; Schwarz, W.H., Kossert, K., Trieloff, M., Hopp, J., Comment on the “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by Paul R. Renne et al. (2010) (2011) Geochimica et Cosmochimica Acta, 75, pp. 5094-5096; Scott, E.R.D., Krot, T.V., Goldstein, J.I., Wakita, S., Thermal and impact history of the H chondrite parent asteroid during metamorphism: Constraints from metallic Fe-Ni (2014) Geochimica et Cosmochimica Acta, 136, pp. 13-37; Semionkin, V.A., Oshtrakh, M.I., Milder, O.B., Novikov, E.G., A high velocity resolution Mössbauer spectrometric system for biomedical research (2010) Bulletin of the Russian Academy of Sciences: Physics, 74, pp. 416-420; Sharma, P., Kubik, P.W., Fehn, U., Gove, G.E., Nishiizumi, K., Elmore, D., Development of 36Cl standards for AMS (1990) Nuclear Instruments and Methods, B52, pp. 410-415; Sharma, P., Bourgeois, M., Elmore, D., Granger, D., Lipschutz, M.E., Ma, X., Miller, T., Vogt, S., PRIME lab AMS performance, upgrades and re-search applications (2000) Nuclear Instruments and Methods, B172, pp. 112-123; Spergel, M.S., Reedy, R.C., Lazareth, O.W., Levy, P.W., Slatest, L.A., Cosmogenic neutron-capture-produced nucleides in stony meteorites (1986) Journal of Geophysical Research, 91, pp. D483-D494. , 16th Proceedings of the Lunar and Planetary Science Conference., (Suppl); Steiger, R.H., Jäger, E., Subcomission on geochronology: Convention on the use of decay constants in geo- and cosmochronology (1977) Earth and Planetary Science Letters, 6, pp. 359-362; Stöffler, D., Keil, K., Scott, E.R.D., Shock metamorphism of ordinary chondrites (1991) Geochimica Cosmochimica Acta, 55, pp. 3845-3867; Sugiura, N., Kiyota, K., Hashizume, K., Nitrogen components in primitive ordinary chondrites (1998) Meteoritics & Planetary Science, 33, pp. 463-482; Trieloff, M., Jessberger, E.K., Herrwerth, I., Hopp, J., Fiéni, C., Ghélis, M., Bourot-Denis, M., Pellas, P., Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry (2003) Nature, 422, pp. 502-506; Trigo-Rodríguez, J.M., Lyytinen, E., Gritsevich, M., Moreno-Ibáñez, M., Bottke, W.F., Williams, I., Lupovka, V., Grokhovsky, V., Orbit and dynamic origin of the recently recovered Annama's H5 chondrite (2015) Monthly Notices of the Royal Astronomical Society, 449, pp. 2119-2127; Wasson, J.T., Kallemeyn, G.W., Compositions of chondrites (1988) Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 325, pp. 535-544; Welten, K.C., Caffee, M.W., Hillegonds, D.J., McCoy, T.J., Masarik, J., Nishiizumi, K., Cosmogenic radionuclides in L5 and LL5 chondrites from Queen Alexandra Range, Antarctica: Identification of a large L/LL5 chondrite shower with a pre-atmospheric mass of ~50 metric tons (2011) Meteoritics & Planetary Science, 46, pp. 177-198; Xie, X., Minitti, M.E., Chen, M., Mao, H.K., Wang, D., Shu, J., Fei, Y., Natural high-pressure polymorph of merrillite in the shock veins of the Suizhou meteorite (2002) Geochimica et Cosmochimica Acta, 66, pp. 2439-2444
Correspondence Address Kohout, T.; Department of Physics, University of HelsinkiFinland; email: tomas.kohout@helsinki.fi
Publisher University of Arkansas
CODEN MPSCF
Language of Original Document English
Abbreviated Source Title Meteorit. Planet. Sci.
Source Scopus