Mathematical model of burning process of coal-ore pellets on conveyor machine / Shvydkii V.S., Yaroshenko Y.G., Spirin N.A., Lavrov V.V. // Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya. - 2017. - V. 60, l. 4. - P. 329-335.

ISSN:
03680797
Type:
Article
Abstract:
Development of mathematical models of coal-ore pellets burning process was executed on the conveyor machine. The problems of heat transfer between gas and material in the transversally blown dense layer are considered. The description is given for the following aspects: the phenomena of drying and cooling of materials (including by air-and-water mixture), oxidation processes of ore constituents of pellets, dissociation of limestone and burning of fuel constituents of material. Equalizations of the engineering mathematical models of iron oxides recovery and burning of fuel granules and of heating of machine’s fire grate (carts) are resulted. When calculating the development of physicochemical transformations in the volume of the pellet, it was assumed that any chemical reaction from the surface of the granules of a particular component proceeds over the entire inner and outer surfaces of the pellet, and the process potential (the difference in the concentration of gaseous reactant) is a function of the pellet’s radius, the diffusion coefficient of reagent in micropores of the pellet. At the same time, the response in the individual pellet is frontal, and the completion degree of the process can be expressed through the radii of unreacted pellet volumes. Among all physicochemical phenomena accompanying the process of calcination of coal-ore pellets, this mathematical model directly takes into account only the main ones, which are reflected in the material balance and can be verified experimentally. Finite-difference approximation of equations of the mathematical model together with the expressions for calculating the thermophysi-cal characteristics of heat carriers, heat and mass transfer coefficients, thermochemical and kinetic constants, etc. have formed the basis of a numerical model of a conveyor burning machine that produces metal-lized pellets. The implementation of this model in the particular case is presented in the article. © 2017, National University of Science and Technology MISIS. All rights reserved.
Author keywords:
Engineering models; Equivalent descriptions; Granules of pellet; Heat exchange; Mathematical description; Stratified process
Index keywords:
нет данных
DOI:
10.17073/0368-0797-2017-4-329-
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026346654&doi=10.17073%2f0368-0797-2017-4-329-335&partnerID=40&md5=de70d07448bb27f24875a1ecc9f37533
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026346654&doi=10.17073%2f0368-0797-2017-4-329-335&partnerID=40&md5=de70d07448bb27f24875a1ecc9f37533
Affiliations Ural Federal University named after the first President of Russiа B.N. Yel’tsin, Ekaterinburg, Russian Federation
Author Keywords Engineering models; Equivalent descriptions; Granules of pellet; Heat exchange; Mathematical description; Stratified process
References Kitaev, B.I., Timofeev, V.N., Bokovikov, B.A., Teplo- i massoob-men v plotnom sloe [Heat and mass transfer in the dense layer (1972) Moscow: Metallurgiya, p. 432; Babushkin, N.M., Bratchikov, S.G., Namyatov, G.N., Okhlazh-denie aglomerata i okatyshei [Cooling of agglomerate and pellets] (1975) Moscow: Metallurgiya, p. 208; Kitaev, B.I., Yaroshenko, Y.G., Sukhanov, E.L., Teplotekhnika domennogo protsessa [Heat engineering of blast furnace process (1978) Moscow: Metallurgiya, p. 248; James, S., Mathematical Principles of Classical Fluid Mechanics. Series: Encyclopedia of Physics (1959) Berlin – Göttingen – Heidelberg: Springer-Verlag OHG, p. 256. , Russ.ed.: Serrin J. Matematicheskie osnovy klassicheskoi mekhaniki zhidkosti. Moscow: IL; Slattery John, S., Momentum, energy, and mass transfer in continua (1971), p. 679. , New York: McGraw-Hill, Russ.ed.: Slattery J. S. Teoriya perenosa impul’sa, energii i massy v sploshnykh sredakh. Moscow: Energiya; Ergan, S., Fluid flow through packed columns (1957) Chem. Eng. Prog, 48, pp. 89-94; Lykov, A.V., Teoriya sushki [Theory of drying (1968) Moscow: Energiya, p. 471; Frank-Kamenetskii, D.A., (1987) Diffuziya I Teploperedacha V Khimicheskoi Kinetike [Diffusion and Heat Transfer in Chemical Kinetics, p. 492. , Moscow: Nauka; Timofeev, V.N., Bokovikov, B.A., Babushkin, N.M., (1966) Mathematical Description of the Phenomena of Heat and Mass Transfer in the Blast Furnace, pp. 5-37. , Teplotekhnika domennogo i aglomeratsionnogo protsessov. Sb. nauch. Trudov VNIIMT № 14 [Heat engineering of blast furnace and agglomeration processes. Coll. of sci. works of VNIIMT no. 14]. Moscow: Metallurgiya; Bokovikov, B.A., (1977) Calculating Methods for Layer Processes and Metal-Lization Units and Their Development., pp. 84-87. , Fizikokhimiya pryamogo polucheniya zheleza [Physicochemistry of direct iron production]. Moscow: Nauka; Bokovikov, B.A., Povolotskii, V.Y., Gimmel’Farb, A.I., Neme-Nov, A.M., (1974) Analysis of the Mine Recovery Process Using the Mathematical Model., pp. 107-113. , Pryamoe poluchenie zheleza i poroshkovaya metallurgiya: Tematich. otrasl. sb. no. 1 [Direct iron production and powder metallurgy: Thematic industrial coll. no. 1]. Moscow: Metal lurgiya; Esin, O.A., Gel’D, P.V., (1962) Fizicheskaya Khimiya Pirometallurgicheskikh Protsessov; Ch.1 [Physical Chemistry of Pyrometallurgical Processes; Part 1]. Sverdlovsk: Metallurgizdat, p. 671; Rostovtsev, S.T., (1956) Teoriya Metallurgicheskikh Protsessov [Theory of Metallurgical Processes]. Moscow: Metallurgizdat, p. 514; Szekely, J., Evans, J.W., Sohn, H.Y., (1976) Solid – Gas Reactions, p. 400. , N.Y.: Academic Press, p; Yagi, I., (1977) Szekely J. Mathematical Formulation on Iron Oxide Pellets in Moving Beds with Nonuniform Gas and Solids Flow. Trans. Iron and Steel Inst. Japan., 10, pp. 569-575; Funghini, A., Fontana, P., Marchi, G., The operation of the blast furnace: theory and practice. Arles (1980), 2. , B. 2.1–B. 2.6; Takahashi, Y., Takahashi, R., (1981), pp. 78-92. , Proc. VIII Joint Japan – USSR Symposium on Physical Chemistry of Metallurgical Processes. Tokyo; Bogdandy, L., Engell, H.-J., (1967) Die Reduktion Der Eisenerze. Duesseldorf: Springer Verlag, p. 539. , (Russ.ed.: Bogdandy L., Engell H.-J. Vosstanovlenie zheleznykh rud. Moscow: Metallurgiya, 1971, 519 p; Patankar, S.V., (1980) Numerical Heat Transfer and Fluid Flow, p. 152. , New York: Hemisphere Publishing Corporation, (Russ.ed.: Patan- kar S. Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti. Moscow: Energoatomizdat; Spirin, N.A., Lavrov, V.V., Rybolovlev, V.Y., Gileva, L.Y., Kras-Nobaev, A.V., Shvydkii, V.S., Onorin, O.P., Burykin, A.A., (2014) Matematicheskoe Modelirovanie Metallurgicheskikh Protsessov V ASU TP [Mathematical Modeling of Metallurgical Processes in the Automated Process Control System], p. 558. , Spirin N.A. ed. Ekaterinburg: OOO “UIPTs
Publisher National University of Science and Technology MISIS
CODEN IVUMA
Language of Original Document Russian
Abbreviated Source Title Izv Vyssh Uchebn Zaved Chern Metall
Source Scopus