Dilatometric analysis of the process of the nanocrystallization of Fe72.5Cu1Nb2Mo1.5Si14B9 soft magnetic alloy / Tsepelev V.S., Starodubtsev Y.N., Zelenin V.A., Kataev V.A., Belozerov V.Y., Konashkov V.V. // Physics of Metals and Metallography. - 2017. - V. 118, l. 6. - P. 553-557.

ISSN:
0031918X
Type:
Article
Abstract:
The process of the nanocrystallization of magnetically soft Fe72.5Cu1Nb2Mo1.5Si14B9 alloy has been studied using dilatometry and thermomagnetic analysis, together with structural investigations. It has been shown that the amount of nanocrystalline phase precipitated upon heating of the amorphous precursor is in good agreement with a shortening of the ribbon length in the course of crystallization. Thermal expansion at the different stages of heating and cooling depends on the structural and phase states, as well as on the magnetic state of the alloy. The numerical value of the coefficient of linear thermal expansion decreases with an increase in the fraction of the ferromagnetic crystalline phase. © 2017, Pleiades Publishing, Ltd.
Author keywords:
crystallization; dilatometry; nanocrystalline structure; soft magnetic alloy
Index keywords:
Alloys; Crystallization; Dilatometers; Heating; Magnetic materials; Magnetism; Nanocrystallization; Nanocrystals; Thermal expansion; Coefficient of linear thermal expansion; Dilatometric analysis; Dil
DOI:
10.1134/S0031918X17060096
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021770862&doi=10.1134%2fS0031918X17060096&partnerID=40&md5=a10506e5bcdc955c1ad9edb2d0b6ea59
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021770862&doi=10.1134%2fS0031918X17060096&partnerID=40&md5=a10506e5bcdc955c1ad9edb2d0b6ea59
Affiliations Yl.sin Ural Federal University, ul. Mira 19, Ekaterinburg, Russian Federation; Scientific and Production Enterprise Gammamet, ul. Kirova 28, Ekaterinburg, Russian Federation
Author Keywords crystallization; dilatometry; nanocrystalline structure; soft magnetic alloy
References Ys.izawa, Y., Oguma, S., Ym.uchi, K., New Febased soft magnetic alloys composed of ultrafine grain structure (1988) J. Appl. Phys., 64, pp. 6044-6046; Herzer, G., Grain structure and magnetism of nanocrystalline ferromagnets (1989) IEEE Trans. Magn., 25, pp. 3327-3329; Ys.izawa, Y., Nanocrystalline soft magnetic materials and their applications (2006) Handbook of Advanced Magnetic Materials, Vol. 4: Properties and Applications, pp. 124-158. , Liu Y., Sellmyer D. J., Shindo D., (eds; Herzer, G., Nanocrystalline soft magnetic alloys (1997) Handbook of Magnetic Materials, 10, pp. 415-462; Keilin, V.I., Belozerov, V.Y., Starodubtsev, Y.N., Magnetic alloy for annealing in oxide medium and method of its production (1994) RF Patent 2009258; Belozerov, V.Y., Starodubtsev, Y.N., Keilin, V.I., Strip core from magnetic alloy on the base of iron (1995) RF Patent 2033649; Starodubtsev, Y.N., Belozerov, V.Y., (2002) Magnetic Properties of Amorphous and Nanocrystalline Alloys; Tsepelev, V., Konashkov, V., Starodubtsev, Y.N., Belozerov, V.Y., Gaipishevarov, D., Optimum regime of heat treatment of soft magnetic amorphous materials (2012) IEEE Trans. Magn., 48, pp. 1327-1330; Silveyra, J.M., Illeková, E., Švec, P., Janickovic, D., Rosales-Rivera, A., Cremaschi, V.J., Phase transformations in Mo-doped FINEMETs (2010) Physica B, 405, pp. 2720-2725; Silveyra, J.M., Cremaschi, V.J., Janickovic, D., Švec, P., Arcondo, B., Structural and magnetic study of Mo-doped FINEMET (2011) J. Magn. Magn. Mater., 323, pp. 290-296; Filippov, B.N., Shulika, V.V., Potapov, A.V., Vil’danova, N.F., Magnetic properties and temperature stability of a molybdenum-doped FINEMENTtype alloy (2014) Tech. Phys., 59, pp. 373-377; Niu, Y.C., Bian, X.F., Wang, V.M., Jin, S.F., Li, G.H., Chu, F.M., Zhang, W.G., The peculiarity of contraction in the primary crystallization of amorphous Fe73.5Nb3CuSi13,5B9 alloy (2007) J. Alloys Compd., 433, pp. 296-301; Silveyra, J.M., Cremaschi, V.J., Vlasák, G., Illeková, E., Janickovic, D., Švec, P., Magnetostrictive behavior of Fe73.5Si13.5B9Nb(3–x)MoxCu alloys (2010) J. Magn. Magn. Mater., 322, pp. 2350-2354; Kubaschewski, O., (1982) Iron—Binary Phase Diagrams; Chien, C.L., Musser, D., Gyorgy, E.M., Sherwood, R.C., Chen, H.S., Luborsky, F.E., Walter, J.L., Magnetic properties of amorphous FexB(100–x) (72 = x = 86) and crystalline Fe3B (1979) Phys. Rev. B: Solid State, 20, pp. 283-295; Jeffries, J.B., Hershkowitz, N., Temperature dependence of the hyperfine interactions of FeB (1969) Phys. Lett., 30, pp. 187-188; Barinov, V.A., Voronin, V.I., Kazantsev, V.A., Tsurin, V.A., Fedorenko, V.V., Novikov, S.I., Surikov, V.T., Structure and magnetic properties of metastable Fe–B phase (2005) Phys. Met. Metallogr., 100, pp. 456-467; Chen, W.A., Ryder, P.L., X-ray and differential scanning calorimetry study of the crystallization of amorphous Fe73.5CuNb3Si13,5B9 alloy (1995) Mater. Sci. Eng., B, 34, pp. 204-209; Borrego, J.M., Conde, C.F., Conde, A., Thermomagnetic study of devitrification in Fe–Si–B–Cu–Nb(–X) alloys (2000) Philos. Mag. Lett., 80, pp. 359-365; Gerling, R., Schimansky, F.P., Wagner, R., Restoration of the ductility of thermally embrittled amorphous alloys under neutron-irradiation (1987) Acta Metall., 35, pp. 1001-1006; Niu, Y.C., Bian, X.E., Wang, W.M., Origin of ductile–brittle transition of amorphous Fe78Si9B13 ribbon during low temperature annealing (2004) J. Non-Cryst. Solids, 341, pp. 40-45
Correspondence Address Tsepelev, V.S.; Yl.sin Ural Federal University, ul. Mira 19, Russian Federation; email: v.s.tsepelev@urfu.ru
Publisher Maik Nauka-Interperiodica Publishing
Language of Original Document English
Abbreviated Source Title Phys. Met. Metallogr.
Source Scopus