Measurement of the electrical resistivity of liquid 32G2 and 32G1 steels by the rotating magnetic field method / Borovykh M.A., Chikova O.A., Tsepelev V.S., V’yukhin V.V. // Russian Metallurgy (Metally). - 2017. - V. 2017, l. 3. - P. 175-178.

ISSN:
00360295
Type:
Article
Abstract:
The resistivity of liquid 32G2 and 32G1 steels are measured using the rotating magnetic field method to obtain information on their liquid structures. The technique of measurements is described and the influence of self-induction and viscosity on the resistivity is estimated. The results are discussed in the framework of a microheterogeneous structure of a metallic melt. A conclusion is made about the character of the influence of slag inclusions detected by magnetic powder and ultrasonic methods on the temperature dependences of the resistivities of liquid 32G2 and 32G1 steels. The change in the temperature coefficient of the resistivity of the melt on heating to 1700°C is interpreted using the Nagel–Tauc model. © 2017, Pleiades Publishing, Ltd.
Author keywords:
electrical resistivity; melt; microheterogeneities; slag inclusions; steel
Index keywords:
Electric conductivity; Electric conductivity of liquids; Liquids; Magnetic fields; Magnetism; Melting; Slags; Steel; Temperature; Ultrasonic applications; Liquid structures; Micro-heterogeneous; micro
DOI:
10.1134/S0036029517030041
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021659529&doi=10.1134%2fS0036029517030041&partnerID=40&md5=36b3c7d4d01b354dee61ae5916462ef8
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021659529&doi=10.1134%2fS0036029517030041&partnerID=40&md5=36b3c7d4d01b354dee61ae5916462ef8
Affiliations Ural Federal University, ul. Mira 19, Yekaterinburg, Russian Federation
Author Keywords electrical resistivity; melt; microheterogeneities; slag inclusions; steel
References Ostrovskii, O.A., Grigoryan, V.A., Vishkarev, A.F., (1988) Properties of Metallic Melts, , Metallurgiya, Moscow; Popel, P.S., Chikova, O.A., Matveev, V.M., Metastable colloidal states of liquid metallic solutions (1995) High Temp. Mater. Proc., 14 (1), pp. 219-233; Wang, J., He, S., Sun, B., Guo, Q., Nishio, M., Grain refinement of Al–Si alloy (A356) by melt thermal treatment (2003) J. Mater. Proc. Technol., 141 (1), pp. 29-34; Morris, J.R., Dahlborg, U., Calvo-Dahlborg, M., Recent development and outstanding challenges in theory and modeling of liquid metals (2007) J. Non-Cryst. Solids, 353 (32-40), pp. 3444-3453; Calvo-Dahlborg, M., Popel, P.S., Kramer, M.J., Besser, M., Morris, J.R., Dahlborg, U., Superheat dependent microstructure of molten Al–Si alloys of different composition studied by small angle neutron scattering (2013) J. Alloys Compd., 550 (15), pp. 9-22; Zu, F.-Q., Temperature induced liquid–liquid transition in metallic melts: brief review on the physical phenomenon (2015) Metals, 5 (1), pp. 395-417; Kolotukhin, E.V., Popel, P.S., Tsepelev, V.S., Electrical resistivity of cobalt-boron melts and the estimation of the scale of their microheterogeneity (1988) Rasplavy, 2 (3), pp. 25-29; Kononenko, V.I., Razhabov, A.A., Ryabina, A.V., Viscosity and the resistivity of Al–Li alloys (2011) Rasplavy, 3, pp. 30-33; Li, C., Du, S., Zhao, D., Zhou, G., Geng, H., Electrical resistivity feature of Cu–Sn–(Bi) alloy melts (2014) Phys. Chem. Liquids, 52 (1), pp. 122-129; Plevachuk, Y., Sklyarchuk, V., Yakymovich, A., Willers, B., Eckert, S., Electronic properties and viscosity of liquid Pb–Sn alloys (2005) J. Alloys Compd., 394 (1-2), pp. 63-68; Tarasevich, Y.Y., (2002) Percolation: Theory, Applications, and Algorithms, , Editorial URSS, Moscow; Dul’nev, G.N., Novikov, V.V., (1991) Transport Processes in Heterogeneous Media, , Energoizdat, Leningrad; Chikova, O.A., On structural transitions in liquid metals and alloys (2009) Rasplavy, 1, pp. 18-30; Odelevskii, V.I., Calculation of the generalized conductivity of heterogeneous systems (1951) ZhTF, 21 (6), pp. 667-685; Batalin, G.I., Khakonov, A.I., Determination and the calculation of the electrical resistivity of liquid aluminum- based metallic solutions (1970) Fiz. Met. Metalloved., 29 (1), pp. 113-117; Wang, M., Jia, P., Lu, D., Geng, H., Study on the microstructure and liquid–solid correlation of Al–Mg alloy (2016) Phys. Chem. Liquids, 54 (4), pp. 507-514; Adams, P.D., Leach, J.S., Resistivity of liquid lead–tin alloys (1967) Phys. Rev., 156 (1), pp. 178-183; Zhuravlev, S.I., Ostrovskii, O.A., Grigoryan, V.A., Measurement of the conductivity of liquid metals by the eddy current method (1982) Teplofiz. Vys. Temp., 20 (4), pp. 665-670; Regel, A.R., Electrodeless method of measuring the conductivity and the possibility of their application for the problems of the physicochemical analysis (1956) Zh. Neorgan. Khimii, 1 (6), pp. 1271-1277; Regel, A.R., The measurement of the conductivity of metals in rotating magnetic field (1948) Zh. Fiz. Khim., 18 (6), pp. 1511-1520; Regel, A.R., Glazov, V.M., (1978) Periodic Law and Physical Properties of Electronic Melts, , Nauka, Moscow; Voronkov, V.V., Ivanova, I.I., Turovskii, B.M., On application of the rotating magnetic field for measurement of the conductivity of melts (1973) Magnitnaya Gidrodinamika, 2, pp. 147-149; Ryabina, A.V., Kononenko, V.I., Razhabov, A.A., Electrodeless method of measuring the electrical resistance of metals in solid and liquid states and the unit of its application (2009) Rasplavy, 1, pp. 34-42; Mokrovskii, N.P., Regel, A.R., The resistivity of copper, nickel, cobalt, iron, and manganese in solid and liquid states (1953) ZhTF, 23 (12), pp. 2121-2125; Zinov’ev, V.E., (1984) Kinetic Properties of Metals at High Temperatures: A Handbook, , Metallurgiya, Moscow; Tyagunov, G.V., The measurement of the resistivity by the rotating magnetic field method (2003) Zavod. Labor., 69 (2), pp. 36-38; Konashkov, V.V., Povodator, A.M., V’yukhin, V.V., Tsepelev, V.S., (2012) Method of measuring the electrical resistance of metallic melts by the rotating magnetic field method; Arsent’ev, P.P., Yakovlev, V.V., Krasheninnikov, M.G., Pronin, L.A., Filippov, E.S., (1988) Physicochemical Methods of Studying Metallurgical Processes, , Metallurgiya, Moscow; Glazov, V.M., Vobst, M., Timoshenko, V.I., (1989) Method of Studying the Properties of Liquid Metals and Semiconductors, , Metallurgiya, Moscow; Gol’dstein, M.I., Grachev, S.V., Veksler, Y.G., (1999) Special Steels, , MISiS, Moscow; Sorokin, V.G., (2001) Steels and Alloys: A Handbook of Steel Grades, , Intermet Inzhiniring, Moscow; Atlas of Steel Defects (1979); Chikova, O.A., Tsepelev, V.S., V’yukhin, V.V., Belonosov, A.V., Effect of defects on the viscosity of liquid 9Kh2MF and 75Kh3MF steels (2013) Izv. Vysshikh Uchedn. Zaved., Ser. Cher. Met., 9, pp. 53-56; Tyagunov, A.G., Baryshev, E.E., Tsepelev, V.S., Kostina, T.K., Baum, B.A., Savin, O.V., Resistivity of liquid high-temperature alloys (1996) Rasplavy, 6, pp. 23-28
Correspondence Address Borovykh, M.A.; Ural Federal University, ul. Mira 19, Russian Federation; email: chik63@mail.ru
Publisher Maik Nauka-Interperiodica Publishing
Language of Original Document English
Abbreviated Source Title Russ. Metall. (Metally)
Source Scopus