References |
Ostrovskii, O.A., Grigoryan, V.A., Vishkarev, A.F., (1988) Properties of Metallic Melts, , Metallurgiya, Moscow; Popel, P.S., Chikova, O.A., Matveev, V.M., Metastable colloidal states of liquid metallic solutions (1995) High Temp. Mater. Proc., 14 (1), pp. 219-233; Wang, J., He, S., Sun, B., Guo, Q., Nishio, M., Grain refinement of Al–Si alloy (A356) by melt thermal treatment (2003) J. Mater. Proc. Technol., 141 (1), pp. 29-34; Morris, J.R., Dahlborg, U., Calvo-Dahlborg, M., Recent development and outstanding challenges in theory and modeling of liquid metals (2007) J. Non-Cryst. Solids, 353 (32-40), pp. 3444-3453; Calvo-Dahlborg, M., Popel, P.S., Kramer, M.J., Besser, M., Morris, J.R., Dahlborg, U., Superheat dependent microstructure of molten Al–Si alloys of different composition studied by small angle neutron scattering (2013) J. Alloys Compd., 550 (15), pp. 9-22; Zu, F.-Q., Temperature induced liquid–liquid transition in metallic melts: brief review on the physical phenomenon (2015) Metals, 5 (1), pp. 395-417; Kolotukhin, E.V., Popel, P.S., Tsepelev, V.S., Electrical resistivity of cobalt-boron melts and the estimation of the scale of their microheterogeneity (1988) Rasplavy, 2 (3), pp. 25-29; Kononenko, V.I., Razhabov, A.A., Ryabina, A.V., Viscosity and the resistivity of Al–Li alloys (2011) Rasplavy, 3, pp. 30-33; Li, C., Du, S., Zhao, D., Zhou, G., Geng, H., Electrical resistivity feature of Cu–Sn–(Bi) alloy melts (2014) Phys. Chem. Liquids, 52 (1), pp. 122-129; Plevachuk, Y., Sklyarchuk, V., Yakymovich, A., Willers, B., Eckert, S., Electronic properties and viscosity of liquid Pb–Sn alloys (2005) J. Alloys Compd., 394 (1-2), pp. 63-68; Tarasevich, Y.Y., (2002) Percolation: Theory, Applications, and Algorithms, , Editorial URSS, Moscow; Dul’nev, G.N., Novikov, V.V., (1991) Transport Processes in Heterogeneous Media, , Energoizdat, Leningrad; Chikova, O.A., On structural transitions in liquid metals and alloys (2009) Rasplavy, 1, pp. 18-30; Odelevskii, V.I., Calculation of the generalized conductivity of heterogeneous systems (1951) ZhTF, 21 (6), pp. 667-685; Batalin, G.I., Khakonov, A.I., Determination and the calculation of the electrical resistivity of liquid aluminum- based metallic solutions (1970) Fiz. Met. Metalloved., 29 (1), pp. 113-117; Wang, M., Jia, P., Lu, D., Geng, H., Study on the microstructure and liquid–solid correlation of Al–Mg alloy (2016) Phys. Chem. Liquids, 54 (4), pp. 507-514; Adams, P.D., Leach, J.S., Resistivity of liquid lead–tin alloys (1967) Phys. Rev., 156 (1), pp. 178-183; Zhuravlev, S.I., Ostrovskii, O.A., Grigoryan, V.A., Measurement of the conductivity of liquid metals by the eddy current method (1982) Teplofiz. Vys. Temp., 20 (4), pp. 665-670; Regel, A.R., Electrodeless method of measuring the conductivity and the possibility of their application for the problems of the physicochemical analysis (1956) Zh. Neorgan. Khimii, 1 (6), pp. 1271-1277; Regel, A.R., The measurement of the conductivity of metals in rotating magnetic field (1948) Zh. Fiz. Khim., 18 (6), pp. 1511-1520; Regel, A.R., Glazov, V.M., (1978) Periodic Law and Physical Properties of Electronic Melts, , Nauka, Moscow; Voronkov, V.V., Ivanova, I.I., Turovskii, B.M., On application of the rotating magnetic field for measurement of the conductivity of melts (1973) Magnitnaya Gidrodinamika, 2, pp. 147-149; Ryabina, A.V., Kononenko, V.I., Razhabov, A.A., Electrodeless method of measuring the electrical resistance of metals in solid and liquid states and the unit of its application (2009) Rasplavy, 1, pp. 34-42; Mokrovskii, N.P., Regel, A.R., The resistivity of copper, nickel, cobalt, iron, and manganese in solid and liquid states (1953) ZhTF, 23 (12), pp. 2121-2125; Zinov’ev, V.E., (1984) Kinetic Properties of Metals at High Temperatures: A Handbook, , Metallurgiya, Moscow; Tyagunov, G.V., The measurement of the resistivity by the rotating magnetic field method (2003) Zavod. Labor., 69 (2), pp. 36-38; Konashkov, V.V., Povodator, A.M., V’yukhin, V.V., Tsepelev, V.S., (2012) Method of measuring the electrical resistance of metallic melts by the rotating magnetic field method; Arsent’ev, P.P., Yakovlev, V.V., Krasheninnikov, M.G., Pronin, L.A., Filippov, E.S., (1988) Physicochemical Methods of Studying Metallurgical Processes, , Metallurgiya, Moscow; Glazov, V.M., Vobst, M., Timoshenko, V.I., (1989) Method of Studying the Properties of Liquid Metals and Semiconductors, , Metallurgiya, Moscow; Gol’dstein, M.I., Grachev, S.V., Veksler, Y.G., (1999) Special Steels, , MISiS, Moscow; Sorokin, V.G., (2001) Steels and Alloys: A Handbook of Steel Grades, , Intermet Inzhiniring, Moscow; Atlas of Steel Defects (1979); Chikova, O.A., Tsepelev, V.S., V’yukhin, V.V., Belonosov, A.V., Effect of defects on the viscosity of liquid 9Kh2MF and 75Kh3MF steels (2013) Izv. Vysshikh Uchedn. Zaved., Ser. Cher. Met., 9, pp. 53-56; Tyagunov, A.G., Baryshev, E.E., Tsepelev, V.S., Kostina, T.K., Baum, B.A., Savin, O.V., Resistivity of liquid high-temperature alloys (1996) Rasplavy, 6, pp. 23-28 |