Testing the capability of ORCHIDEE land surface model to simulate Arctic ecosystems: Sensitivity analysis and site-level model calibration / Dantec-Nédélec S., Ottlé C., Wang T., Guglielmo F., Maignan F., Delbart N., Valdayskikh V., Radchenko T., Nekrasova O., Zakharov V., Jouzel J. // Journal of Advances in Modeling Earth Systems. - 2017. - V. 9, l. 2. - P. 1212-1230.

ISSN:
19422466
Type:
Article
Abstract:
The ORCHIDEE land surface model has recently been updated to improve the representation of high-latitude environments. The model now includes improved soil thermodynamics and the representation of permafrost physical processes (soil thawing and freezing), as well as a new snow model to improve the representation of the seasonal evolution of the snow pack and the resulting insulation effects. The model was evaluated against data from the experimental sites of the WSibIso-Megagrant project (www.wsibiso.ru). ORCHIDEE was applied in stand-alone mode, on two experimental sites located in the Yamal Peninsula in the northwestern part of Siberia. These sites are representative of circumpolar-Arctic tundra environments and differ by their respective fractions of shrub/tree cover and soil type. After performing a global sensitivity analysis to identify those parameters that have most influence on the simulation of energy and water transfers, the model was calibrated at local scale and evaluated against in situ measurements (vertical profiles of soil temperature and moisture, as well as active layer thickness) acquired during summer 2012. The results show how sensitivity analysis can identify the dominant processes and thereby reduce the parameter space for the calibration process. We also discuss the model performance at simulating the soil temperature and water content (i.e., energy and water transfers in the soil-vegetation-atmosphere continuum) and the contribution of the vertical discretization of the hydrothermal properties. This work clearly shows, at least at the two sites used for validation, that the new ORCHIDEE vertical discretization can represent the water and heat transfers through complex cryogenic Arctic soils—soils which present multiple horizons sometimes with peat inclusions. The improved model allows us to prescribe the vertical heterogeneity of the soil hydrothermal properties. © 2017. The Authors.
Author keywords:
cryogenic soils; land surface model; ORCHIDEE; permafrost; sensitivity analysis; tundra; western Siberia
Index keywords:
Cryogenics; Heat transfer; Permafrost; Sensitivity analysis; Snow; Soils; Surface measurement; Temperature; Thermodynamics; Calibration process; Global sensitivity analysis; Hydrothermal properties; L
DOI:
10.1002/2016MS000860
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019586089&doi=10.1002%2f2016MS000860&partnerID=40&md5=5b720e384742d4bd75ae941fb8141e3a
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019586089&doi=10.1002%2f2016MS000860&partnerID=40&md5=5b720e384742d4bd75ae941fb8141e3a
Affiliations LSCE-IPSL, UMR 8212, CNRS-CEA-UVSQ, Orme des Merisiers, Gif-sur-Yvette, France; PRODIG, UMR 8586, Université Paris-Diderot, Paris, France; Ural Federal University, Yekaterinburg, Russian Federation
Author Keywords cryogenic soils; land surface model; ORCHIDEE; permafrost; sensitivity analysis; tundra; western Siberia
References Belward, A., Estes, J., Kline, K., The IGBP-DIS Global 1-km Land-Cover Data Set DISCover: A project overview (1999) Photogramm. Eng. Remote Sens., 9, pp. 1013-1020; Benavidès Pinjosovsky, H.S., Thiria, S., Ottlé, C., Brajard, J., Badran, F., Maugis, P., Variational assimilation of land surface temperature within the ORCHIDEE Land Surface Model Version 1.2.6 (2017) Geosci. Model Dev., 10, pp. 85-104; Beringer, J., Lynch, A.H., Chapin, F.S., III, Mack, M., Bonan, G.B., The representation of Arctic soils in the land surface model: The importance of mosses (2001) J. Clim., 14 (15), pp. 3324-3335; Bicheron, P., Leroy, M., Brockmann, C., Krämer, U., Miras, B., Huc, M., Gross, D., (2006), pp. 538-542. , Globcover A 300 m global land cover product for 2005 using ENVISAT MERIS time series, in, Proceedings of the Second International Symposium on Recent Advances in Quantitative Remote Sensing, Serv. de Publ., Univ. de Valencia, Valencia, Spain; Bontemps, S., (2013), Consistent global land cover maps for climate modelling communities Current achievements of the ESA's land cover CCI, paper presented at the ESA Living Planet Symposium, Edinburgh, U. K., 9–13 Sept; Campolongo, F., Cariboni, J., Saltelli, A., An effective screening design for sensitivity analysis of large models (2007) Environ. Modell. Software, 22 (10), pp. 1509-1518; Campolongo, F., Saltelli, A., Cariboni, J., From screening to quantitative sensitivity analysis: A unified approach (2011) Comput. Phys. Commun., 182 (4), pp. 978-988; Carsel, R.F., Parrish, R.S., Developing joint probability distributions of soil water retention characteristics (1988) Water Resour. Res., 24 (5), pp. 755-769; Chadburn, S., Burke, E., Essery, R., Boike, J., Langer, M., Heikenfeld, M., Cox, P., Friedlingstein, P., An improved representation of physical permafrost dynamics in the JULES land-surface model (2015) Geosci. Model Dev., 8 (5), pp. 1493-1508; Chapin, F.S., Role of land-surface changes in Arctic summer warming (2005) Science, 310 (5748), pp. 657-660; Dankers, R., Burke, E.J., Price, J., Simulation of permafrost and seasonal thaw depth in the JULES land surface scheme (2011) Cryosphere, 5 (3), pp. 773-790; De Rosnay, P., Polcher, J., Bruen, M., Laval, K., Impact of a physically based soil water flow and soil-plant interaction representation for modeling large-scale land surface processes (2002) J. Geophys. Res., 107 (D11); Dickinson, R.E., Henderson-Sellers, A., Kennedy, P.J., (1993), Biosphere-atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model,, Rep. N. T. N. NCAR/TN-387+STR, Boulder, Colo; Ducoudré, N., Laval, K., Perrier, A., SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land-atmosphere interface within the LMD Atmospheric General Circulation Model (1993) J. Clim., 6 (2), pp. 248-273; Dufresne, J.L., Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5 (2013) Clim. Dyn., 40 (9-10), pp. 2123-2165; Frolov, I.E., Ashik, I.M., Kassens, H., Polyakov, I.V., Proshutinsky, A.Y., Sokolov, V.T., Timokhov, L.A., Anomalous variations in the thermohaline structure of the Arctic Ocean (2009) Dokl. Earth Sci., 429 (2), pp. 1567-1569; Gouttevin, I., Krinner, G., Ciais, P., Polcher, J., Legout, C., Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology (2012) Cryosphere, 6 (2), pp. 407-430; Groisman, P., Soja, A.J., Ongoing climatic change in Northern Eurasia: Justification for expedient research (2009) Environ. Res. Lett., 4 (4), p. 045002; Groisman, P.Y., Karl, T.R., Knight, R.W., Stenchikov, G.L., Changes of snow cover, temperature, and radiative heat balance over the Northern Hemisphere (1994) J. Clim., 7 (11), pp. 1633-1656; Gubler, S., Endrizzi, S., Gruber, S., Purves, R.S., Sensitivities and uncertainties of modeled ground temperatures in mountain environments (2013) Geosci. Model Dev., 6 (4), pp. 1319-1336; Guglielmo, F., Simulating hydrology with an isotopic land surface model in western Siberia: What do we learn from water isotopes? (2015) Hydrol. Earth Syst. Sci. Discuss., 12, pp. 9393-9436; Hinzmann, L.D., Evidence and implications of recent climate change in Northern Alaska and other Arctic regions (2005) Clim. Change, 72, pp. 251-298; Homma, T., Saltelli, A., Importance measures in global sensitivity analysis of nonlinear models (1996) Reliab. Eng. Syst. Safety, 52 (1), pp. 1-17; Hourdin, F., The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection (2006) Clim. Dyn., 27, pp. 787-813; Jansen, M.J.W., Analysis of variance designs for model output (1999) Comput. Phys. Commun., 117 (1-2), pp. 35-43; Koenigk, T., Brodeau, L., Graversen, R., Karlsson, J., Svensson, G., Tjernström, M., Willén, U., Wyser, K., Arctic climate change in 21st century CMIP5 simulations with EC-Earth (2013) Clim. Dyn., 40 (11-12), pp. 2719-2743; Koven, C.D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P., Khvorostyanov, D., Krinner, G., Tarnocai, C., Permafrost carbon-climate feedbacks accelerate global warming (2011) Proc. Natl. Acad. Sci. U. S. A., 108 (36), pp. 14,769-14,774; Koven, C.D., Riley, W.J., Stern, A., Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models (2013) J. Clim., 26 (6), pp. 1877-1900; Krinner, G., Viovy, N., De Noblet-Ducoudré, N., A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system (2005) Global Biogeochem. Cycles, 19; Kuppel, S., Chevallier, F., Peylin, P., Quantifying the model structural error in carbon cycle data assimilation systems (2013) Geosci. Model Dev., 6, pp. 45-55; Loranty, M.M., Goetz, S.J., Shrub expansion and climate feedbacks in Arctic tundra (2012) Environ. Res. Lett., 7 (1), p. 011005; Lu, X., Wang, Y.-P., Ziehn, T., Dai, Y., An efficient method for global parameter sensitivity analysis and its applications to the Australian community land surface model (CABLE) (2013) Agric. For. Meteor., pp. 292-303; Morris, M.D., Factorial sampling plans for preliminary computational experiments (1991) Technometrics, 33 (2), pp. 161-174; Nicolsky, D.J., Romanovsky, V.E., Alexeev, V.A., Lawrence, D.M., Improved modeling of permafrost dynamics in a GCM land-surface scheme (2007) Geophys. Res. Lett., 34; Nossent, J., Elsen, P., Bauwens, W., Sobol' sensitivity analysis of a complex environmental model (2011) Environ. Modell. Software, 26 (12), pp. 1515-1525; Olson, J., Watts, J., Allison, L., (1983), p. 152. , Carbon in live vegetation of major world ecosystems,, Tech. Rep. W-7405-ENG-26, Oak Ridge Natl. Lab., Oak Ridge, Tenn; Ottlé, C., Lescure, J., Maignan, F., Poulter, B., Wang, T., Delbart, N., Use of various remote sensing land cover products for PFT mapping over Siberia (2013) Earth Syst. Sci. Data, 5, pp. 331-348; Päivänen, J., (1973), Hydraulic Conductivity and Water Retention in Peat Soils, Suomen Metsätieteellinen Seura, Helsinki, Finland; Paquin, J.P., Sushama, L., On the Arctic near-surface permafrost and climate sensitivities to soil and snow model formulations in climate models (2015) Clim. Dyn., 44 (1-2), pp. 203-228; Peng, S., Simulated high-latitude soil thermal dynamics during the past 4 decades (2016) Cryosphere, 10, pp. 179-192; Pujol, G., Iooss, B., Iooss, M.B., (2014), http://CRAN.R-project.org/package=sensitivity, Package ‘Sensitivity’, R Package Version 1.8–2; Rinke, A., Kuhry, P., Dethloff, K., Importance of a soil organic layer for Arctic climate: A sensitivity study with an Arctic RCM (2008) Geophys. Res. Lett., 35; Romanovsky, V.E., Thermal state of permafrost in Russia (2010) Permafrost Periglac. Process., 21, pp. 136-155; Saltelli, A., Making best use of model evaluations to compute sensitivity indices (2002) Comput. Phys. Commun., 145 (2), pp. 280-297; Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S., (2008) Global Sensitivity Analysis: The Primer, , John Wiley, Hoboken, N. J; Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S., Variance based sensitivity analysis of model output, Design and estimator for the total sensitivity index (2010) Comput. Phys. Commun., 181 (2), pp. 259-270; Serreze, M.C., Barrett, A.P., Slater, A.G., Steele, M., Zhang, J.L., Trenberth, K.E., The large-scale energy budget of the Arctic (2007) J. Geophys. Res., 112; Sitch, S., Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model (2003) Global Change Biol., 9 (2), pp. 161-185; Slater, A.G., Lawrence, D.M., Diagnosing present and future permafrost from climate models (2013) J. Clim., 26 (15), pp. 5608-5623; Sobol, I.M., On sensitivity estimation for nonlinear mathematical models [in Russian] (1990) Mat. Model., 2 (1), pp. 112-118. , Math. Model. Comput. Exp, Engl. Transl; Sobol, I.M., Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates (2001) Math. Comput. Simul., 55, pp. 271-280; Valdayskikh, V., Nekrasova, O., Jouzel, J., Uchaev, A., Radchenko, T., Some characteristics of forest-tundra (West Siberia) soil groups distinguished on the basis of thermal properties (2013) Prace Geogr., 135, pp. 73-86; Vérant, S., Laval, K., Polcher, J., De Castro, M., Sensitivity of the continental hydrological cycle to the spatial resolution over the Iberian Peninsula (2004) J. Hydrometeorol., 5, pp. 267-285; Wang, F., Cheruy, F., Dufresne, J.L., The improvement of soil thermodynamics and its effects on land surface meteorology in the IPSL climate model (2016) Geosci. Model Dev., 9, pp. 363-381; Wang, T., Ottlé, C., Boone, A., Ciais, P., Brun, E., Morin, S., Krinner, G., Peng, S., Evaluation of an improved intermediate complexity snow scheme in the ORCHIDEE land surface model (2013) J. Geophys. Res. Atmos., 118, pp. 6064-6079
Correspondence Address Ottlé, C.; LSCE-IPSL, UMR 8212, CNRS-CEA-UVSQ, Orme des MerisiersFrance; email: catherine.ottle@lsce.ipsl.fr
Publisher Blackwell Publishing Ltd
Language of Original Document English
Abbreviated Source Title J. Adv. Model. Earth Syst.
Source Scopus