Fast fractional fourier transform / Labunets E.V., Labunets V.G. // European Signal Processing Conference. - 1998. - V. 1998-January, l. .

ISSN:
22195491
Type:
Conference Paper
Abstract:
The fractional Fourier transform (FRFT) is a one-parainetric generalization of the classical Fourier transform. Since it's introduction in 1980Hi. the FRFT has been found a lot of applications and used widely nowadays in signal processing. Space and spatial frequency domains are the special cases of the fractional Fourier domains. They correspond to the 0th and 1st fractional Fourier domains, respectively. In this paper, we briefly introduce the multi-parametrical FRFT and its fast algorithm.
Author keywords:
Index keywords:
Fourier optics; Fourier transforms; Fast algorithms; Fractional Fourier domains; Fractional Fourier transforms; Spatial frequency domains; Signal processing
DOI:
нет данных
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019648668&partnerID=40&md5=ed880fba9efb20d5aea8b67402b19697
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019648668&partnerID=40&md5=ed880fba9efb20d5aea8b67402b19697
Affiliations Department of Automation and Information Technologies, Ural State Technical University, Ekalerinburg, Russian Federation
References Condon, E.U., Immersion of the fourier transform in a continuous group of functional transforms (1937) Proc. Nat. Acad. Set, 23, pp. 158-164. , USA; Bargmann, V., On a Hilbert space of analytic functions and an associated integral transform (1961) Part 1. Commun. Pure Appl. Math., 14, pp. 187-214; Namias, V., The fractional order fourier transform and its application to quatum mechanics (1980) J. Inst. Math. Appl, 25, pp. 241-265; McBride, A.C., Kerr, F.H., On Namias' fractional Fourier transforms (1987) IMA J. Appl. Math., 39, pp. 241-265; Ozaktas, H.M., Mendlovic, D., Fourier transform of fractional order and their optical interpretation (1993) Opt. Commun., 110, pp. 163-169; Lohmann, A.W., Image rotation, wigner rotation, and the fractional order Fourier transform (1993) J.Opt. Soc. Am. A, 10, pp. 2181-2186; Almeida, L.B., (1994) The Fractional Fourier Transform and Time-Fraquency Representations IEEE Trans. Signal Processing, 42 (11), pp. 3084-3091; Ozaktas, H.M., Barshan, B., Mendlovic, D., Onural, L., Convolution, filtering and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms (1994) J. Opt. Soc. Am. A, 11, pp. 547-559. , 1994; Kutay, M.A., Ozaktas, H.M., Onural, O., Arikan, L., Optimal filtering in fractional fourier domains (1995) Proc. 1995 ICASPP, IEEE, pp. 937-940. , Piscataway, New Jersey; Zalevsky, Z., Mendlovic, D., Fractional wiener filter (1996) Appl. Opt., 35, pp. 3930-3936
Publisher European Signal Processing Conference, EUSIPCO
Conference name 9th European Signal Processing Conference, EUSIPCO 1998
Conference date 8 September 1998 through 11 September 1998
Language of Original Document English
Abbreviated Source Title European Signal Proces. Conf.
Source Scopus