Distribution of boron between oxide slag and steel / Sychev A.V., Salina V.A., Babenko A.A., Zhuchkov V.I. // Steel in Translation. - 2017. - V. 47, l. 2. - P. 105-107.

ISSN:
09670912
Type:
Article
Abstract:
The influence of silicon (0.1–0.8%), aluminum (0.005%), and carbon (0.1%) in steel on the reduction of boron from slag (basicity 5) at 1400–1700°C is studied by thermodynamic analysis on the basis of HSC 6.1 Chemistry software (Outokumpu). Experiments on the boron distribution between CaO–SiO2–MgO–Al2O3–B2O3 slag and steel are conducted in a high-temperature Tamman resistance furnace. Low-carbon steel with different silicon content is employed. According to the thermodynamic modeling and the experiments, direct microalloying of steel with boron is possible on the basis of its reduction by the silicon present in the steel. The reduction of boron from slag by silicon is theoretically analyzed and experimentally confirmed. The results of thermodynamic modeling indicate that boron may be reduced from CaO–SiO2–MgO–Al2O3–B2O3 slag by silicon despite its low content in the steel (0.1–0.8%). With increase in the initial Si content in the steel, the boron concentration in the steel also increases. The influence of the Si content and the steel temperature on the final boron content is studied. When steel is held under slag containing 4.3% B2O3, the boron is reduced, mainly by silicon, whose content in the steel is 15–22% lower after the experiment. More boron is present in the steel sample with an elevated Si content. The degree of assimilation of boron is 5.8–6.9%; this is consistent with the thermodynamic modeling. The boron content in the metal may be regulated by adjusting the temperature and the silicon content of the steel. On the basis of the results, a technology for the direct microalloying of steel with boron may be developed. © 2017, Allerton Press, Inc.
Author keywords:
boron; direct alloying; experiments; phase distribution of boron; slag; steel; thermodynamic modeling
Index keywords:
Alkalinity; Aluminum; Boron; C (programming language); Chemical analysis; Experiments; Microalloying; Silicon; Silicon oxides; Slags; Steel; Steel metallurgy; Temperature; Thermoanalysis; Thermodynami
DOI:
10.3103/S0967091217020127
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019699842&doi=10.3103%2fS0967091217020127&partnerID=40&md5=435a015d51a26bc6a0214bbe4102d308
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019699842&doi=10.3103%2fS0967091217020127&partnerID=40&md5=435a015d51a26bc6a0214bbe4102d308
Affiliations Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russian Federation
Author Keywords boron; direct alloying; experiments; phase distribution of boron; slag; steel; thermodynamic modeling
References Lyakishev, N.P., Pliner, Y.L., Lappo, S.I., (1986) Borsoderzhashchie stali i splavy, , Metallurgiya, Moscow; Ershov, G.S., Bychkov, Y.B., (1982) Fiziko-khimicheskie osnovy ratsional’nogo legirovaniya stali i splavov, , Metallurgiya, Moscow; Heckmann, C.J., Ormston, D., Grimpe, F., Development of low carbon Nb–Ti–B microalloyed steels for high strength large diameter linepipe (2005) Iron and Steelmaking, 4, pp. 57-60; Asakhi, K., Khaara, T., Tzuru, E., Development of ultra-high-strength X120 UEO pipes (2006) Mater. mezhdunar. seminara “Sovremennye stali dlya gazonefteprovodnykh trub: problemy i perspektivy, pp. 123-130. , Metallurgizdat, Moscow; Kobyakov, K.V., Nevar, N.F., Research of the influence of alloying with boron on the properties of ironcarbon alloys (2014) Lit’e Metall., 1 (74), pp. 105-107; Gol’dshtein, Y.E., Mizin, V.G., (1986) Modifitsirovanie i mikrolegirovanie chuguna i stali, , Metallurgiya, Moscow; Kolbasnikov, N.G., Matveev, M.A., Research of boron influence on high-temperature plasticity of microalloyed steel (2016) Nauchno-Tekh. Ved. S.-Peterb. Gos. Politekh. Univ., Metall. Materialoved., 1 (238), pp. 129-135; Potapov, A.I., Analysis of steel microalloying by boron to improve the production technology of boron-containing steel (2013) Extended Abstract of Cand. Sci. (Tech.) Dissertation, p. 27; Upadhyaya, N., Pujara, M.G., Sakthivelb, T., Mallikaa, C., Lahab, K., Kamachi Mudalia, U., Effect of addition of boron and nitrogen on the corrosion resistance of modified 9Cr–1Mo ferritic steel (2014) Proc. Eng., 86, pp. 606-614; Zhang, Y.-L., Zhang, Y.-Y., Yang, F.-H., Zhang, Z.-T., Effect of alloying elements (Sb, B) on recrystallization and oxidation of Mn-containing IF steel (2013) Int. J. Iron Steel Res., 20 (3), pp. 39-44; Wang, H., Zhang, T., Zhu, H., Guirong, L., Yongqi, Y., Wang, J., Effect of B2O3 on melting temperature, viscosity and desulfurization capacity of CaO-based refining flux (2011) ISIJ Int., 51 (5), pp. 702-706; Kyung, C.C., Dong, J.M., Yang, M.K., Jae, S.L., Effect of niobium and titanium addition on the hot ductility of boron containing steel (2011) Mater. Sci. Eng. A, 528, pp. 3556-3561; López-Chipresa, E., Mejía, I., Maldonado, C., Bedolla-Jacuinde, A., El-Wahabi, M., Cabrera, J.M., Hot flow behavior of boron microalloyed steels (2008) Mater. Sci. Eng. A, 480, pp. 49-55; Stumpf, W., Banks, K., The hot working characteristics of boron bearing and conventional low carbon steel (2006) Mater. Sci. Eng. A, 418, pp. 86-94; Stepanov, A.I., Babenko, A.A., Sychev, A.V., Zhuchkov, V.I., Murzin, A.V., Dresvyankina, L.E., Ushakov, M.V., Development of technology for microalloying steel with boron using ferro-silicon-boron (2014) Metallurgist, 58 (7-8), pp. 588-590; Bedolla-Jacuinde, A., Guerra, F.V., Rainforth, M., Mejia, I., Maldonado, C., Sliding wear behavior of austempered ductile iron microalloyed with boron (2015) Wear, 330-331, pp. 23-31; Konovalov, R.P., (1986) Slitok kipyashchei stali, , Metallurgiya, Moscow; Yang, Z.-D., Liu, S.-L., Li, Z.-F., Xue, X.-X., Oxidation of silicon and boron in boron-containing molten iron (2007) J. Iron Steel Res. Int., 14 (6), pp. 32-36; Zhuchkov, V.I., Akberdin, A.A., Vatolin, N.A., Leont’ev, L.I., Zayakin, O.V., Kim, A.S., Konurov, U.K., Application of boron-containing materials in metallurgy (2011) Russ. Metall. (Engl. Transl.), 2011 (12), pp. 1134-1137; Babenko, A.A., Zhuchkov, V.I., Smirnov, L.A., Sychev, A.V., Akberdin, A.A., Kim, A.S., Vitushchenko, M.F., Dobromilov, A.A., Production technology for low-carbon, low-sulfur boron steel (2015) Steel Transl., 45 (11), pp. 883-886; Roine, A., (2002) Outokumpu HSC Chemistry for Windows. Chemical Reactions and Equilibrium Software with Extensive Thermochemical Database, , Outokumpu Research, Pori
Correspondence Address Sychev, A.V.; Institute of Metallurgy, Ural Branch, Russian Academy of SciencesRussian Federation; email: ntm2000@mail.ru
Publisher Allerton Press Incorporation
Language of Original Document English
Abbreviated Source Title Steel Transl.
Source Scopus