Analytical solution of gas bubble dynamics between two-phase flow / Mohammadein S.A., Shalaby G.A., Abu-Bakr A.F., Abu-Nab A.K. // Results in Physics. - 2017. - V. 7, l. . - P. 2396-2403.

ISSN:
22113797
Type:
Article
Abstract:
The growth of a gas bubble between two-phase flow represents the current physical problem. The mathematical model is performed by mass, momentum and diffusion equations. The Problem is solved analytically by using the modified Plesset and Zwick method. The growth process is affected by shear stress, coefficient of consistency, surface tension and void fraction in order to derive the growth of a gas bubble between two-phase in non-Newtonian fluids. The growth of a gas bubble in non-Newtonian fluids flow performs lower values than that in case of Newtonian one. The initial time of bubble growth for the different values of superheating and flow index n in the thermal stage is obtained. Moreover, the effect of critical bubble radius Rcr is studied on the growth process. The results satisfy the growth model in Newtonian fluids given by Foster and Zuber (1954) [34] and Scriven theory (Scriven, 1959) [35] for limited values of physical parameters. © 2017 The Authors
Author keywords:
Extended Plesset and Zwick method; Gas growth bubbles; Initial time of bubble; Shear stress
Index keywords:
нет данных
DOI:
10.1016/j.rinp.2017.07.007
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85024485872&doi=10.1016%2fj.rinp.2017.07.007&partnerID=40&md5=afa08ea4a1c4caa451fb5e635c057869
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85024485872&doi=10.1016%2fj.rinp.2017.07.007&partnerID=40&md5=afa08ea4a1c4caa451fb5e635c057869
Affiliations Mathematics Department, Faculty of Science, Tanta University, Tanta, Egypt; Mathematics Department, Faculty of Science, Menoufia University, Shebin El-Koom, Egypt
Author Keywords Extended Plesset and Zwick method; Gas growth bubbles; Initial time of bubble; Shear stress
References Lugli, F., Zerbetto, F., An introduction to bubble dynamics (2007) Phys Chem, 9, p. 2447; Cunha, F.R., Albernaz, D.L., Oscillatory motion of a spherical bubble in a non-Newtonian fluid (2013) J Non-Newt Fluid Mech, 191, p. 35; Gonnermann, H.M., Manga, M., The fluid mechanics inside a volcano (2007) Annu Rev Fluid Mech, 39, p. 321; Divinis, N., Karapantsios, T.D., Kostoglou, M., Lotz, H., Panoutsos, C.S., Bontozoglou, V., Michels, A.C., De Bruijn, R., Bubbles growing in supersaturated solutions at reduced gravity (2004) AIChE J, 50 (10), p. 2369; Mohammadein, S.A., Abu-Bakr, A.F., The growth of vapour bubble in a superheated liquid between two-phase turbulent flow (2010) Can J Phys, 88 (5), p. 317; Hashemi, S.J., Abedi, J., Advances in modeling of new phase growth (2007) J Energy Fuels, 21 (4), p. 2147; Mohammadein, S.A., Mohamed, K.G., Concentration distribution around a growing gas bubble in tissue (2010) Math Bios, 225 (1), p. 11; Srinivasan, R.S., Gerth, W.A., Powell, M.R., A mathematical model of diffusion limited gas bubble dynamics in tissue with varying diffusion region thickness (2000) Res Physiol, 123, p. 153; Shimiya, Y., Yano, T., Diffusion-controlled shrinkage and growth of an air bubble entrained in water and in wheat flour particles (1987) Agric Biol Chem, 51 (7), p. 1935; Pai, V., Favelukis, M., Dynamics of spherical bubble growth (2002) J Cell Plast, 38, p. 403; Qin, S., Caskey, C.F., Ferrara, K.W., Ultrasound contrast microbubble in imaging and therapy: Physical Principles and engineering (2009) Phys Med Biol, 54, p. 27; Chmiel, H., Walitza, E., On the rheology of human blood and synovial fluids (1980), Rese. Stud Chicester; Sulaymon, A.H., Mohammed, T.J., Jawad, A.H., Hydrodynamic characteristics of the three-phase non-Newtonian liquid-gas-solid fluidized beds (2010) Emirates J Eng Res, 15 (1), p. 41; Box, F.M.A., van der Geest, R.J., Rutten, M.C.M., Reiber, J.H.C., The influence of flow, vessel diameter, and non-Newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for unsteady flow (2005) Invest Radiol, 40; Ellis, A.T., Hoyt, W.J., Some effects of macromolecules on cavitation inception (1968), in: ASME Cavitation Forum; Chahine, G.L., Fruman, D.H., Dilute polymer solution effects on bubble growth and collapse (1979) Phys Fluids, 22, p. 1406; Fogler, H.S., Goddard, J.D., Collapse of spherical cavities in viscoelastic fluids (1970) Phys Fluids, 13, p. 1135; Ting, R.Y., Viscoelastic effect of polymers on single bubble dynamics (1975) AIChE J, 21 (4), p. 1135; Shima, A., Tsujino, T., Nanjo, H., Nonlinear oscillations of gas bubbles in visco elastic fluids (1986) Ultrasonics, 24, p. 142; Martin, M., Montes, F.J., Galan, M.A., On the influence of the liquid physical properties on bubble volumes and generation times (2006) Chem Eng Sci, 61, p. 5196; Li, H.Z., Mouline, Y., Midoux, N., Modelling the bubble formation dynamics in non- Newtionian fluids (2002) Chem Eng Sci, 57, p. 339; Bird, R.B., Amstrong, R.C., Hassager, O., Dynamics of polymeric liquid mechanics (1977), Wily New York; Hesih, D.-Y., Some analytical aspects of bubble dynamics (1965) J Basic Eng, 87 (4), p. 991; Mohammadein, S.A., Mohammed, K.G., Growth of a gas bubble in supersaturated and slightly compressible liquid at low Mach number (2011) Heat Mass Tran, 47, p. 1621; Kudryashov, N.A., Sinelshchikov, D.I., Analytical solutions for problems of bubble dynamics (2015) Phys Lett A, 379, p. 798; Yang, W., Yeh, H., Theoretical study of bubble dynamics in purely viscous fluids (1967) AIChE J, 12, p. 927; Chhabra, R.P., Dhingra, S.C., Creeping motion of a Carreau fluid past a Newtonian fluid sphere (1986) Can J Chem Eng, 64, p. 897; Rodrigue, D., DeKee, D., Chhabra, R.P., R.P. Drag on non-spherical particles in non-Newtonian fluids (1994) Can J Chem Eng, 72, p. 588; Dhole, S.D., Chhabra, R.P., Eswaran, V., Mass transfer from a spherical bubble rising in power-law fluids at intermediate Reynolds numbers (2007) Int Comm Heat Mass Trans, 34 (971); Chhabra, R.P., Bangun, J., Wall effects on terminal velocity of small drops in Newtonian and non-Newtonian fluids (1997) Can J Chem Eng, 75, p. 817; Mohammadein, S.A., Mohammed, K.G., Growth of a gas bubble in supersaturated liquid under the effect of variant cases of surface tension (2011) Int J Mode Phys B, 25 (22), p. 3053; Plesset, M., Zwick, S., The Growth of vapour bubbles in superheated liquids (1954) J Appl Phys, 25, p. 493; Mikic, B.B., Rohsenow, W.M., Griffith, P., On bubble growth rates (1970) Int J Heat Mass Trans, 13, p. 657; Foster, H.K., Zuber, N., Growth of a vapor bubble in a superheated liquid (1954) J Appl Phys, 25, p. 474; Scriven, L.E., On the dynamics of phase growth (1959) Chem Eng Sci, 10, p. 1; Kostoglou, M., Karapantsios, T.D., Approximate solution for a non-isothermal gas bubble growth over a spherical heating element (2005) Ind Eng Chem Res, 44, p. 8127
Correspondence Address Abu-Nab, A.K.; Mathematics Department, Faculty of Science, Menoufia UniversityEgypt; email: ahmed.abunab@yahoo.com
Publisher Elsevier B.V.
Language of Original Document English
Abbreviated Source Title Results Phys.
Source Scopus