On the theory of transient nucleation at the intermediate stage of phase transitions / Alexandrov D.V. // Physics Letters, Section A: General, Atomic and Solid State Physics. - 2014. - V. 378, l. 21. - P. 1501-1504.

ISSN:
03759601
Type:
Article
Abstract:
The evolution of a system of growing aggregates in a macroscopically homogeneous medium with account of both the reduction in metastability and the continuing initiation of new nuclei is studied. The corresponding integro-differential model describing the intermediate stage of phase transitions is solved analytically for arbitrary nucleation kinetics and growth rates of nuclei. An exact solution of the Fokker-Planck equation is found with allowance for the diffusivity along the axis of nucleus radii. In limiting cases of purely kinetic and mixed kinetic-diffusion rates of crystal growth for a special form of diffusivity, the obtained solutions transform to earlier known expressions. © 2014 Elsevier B.V.
Author keywords:
Crystal growth; Kinetics; Nucleation; Phase transitions
Index keywords:
нет данных
DOI:
10.1016/j.physleta.2014.03.051
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84899538769&doi=10.1016%2fj.physleta.2014.03.051&partnerID=40&md5=eed032e217d38cd09829b2e27b015397
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84899538769&doi=10.1016%2fj.physleta.2014.03.051&partnerID=40&md5=eed032e217d38cd09829b2e27b015397
Affiliations Department of Mathematical Physics, Ural Federal University, Lenin ave. 51, Ekaterinburg 620000, Russian Federation
Author Keywords Crystal growth; Kinetics; Nucleation; Phase transitions
References Solomatov, V.S., Stevenson, D.J., (1993) J. Geophys. Res., 98, p. 5407; Caraballo, K.G., Baird, J.K., Ng, J.D., (2006) Cryst. Growth Des., 6, p. 874; Hamza, M.A., Berge, B., Mikosch, W., Rühl, E., (2004) Phys. Chem. Chem. Phys., 6, p. 3484; Kulkarni, S.A., Kadam, S.S., Meekes, H., Stankiewicz, A.I., Ter Horst, J.H., (2013) Cryst. Growth Des., 13, p. 2435; Buyevich, Yu.A., Ivanov, A.O., (1993) Physica A, 193, p. 221; Ivanov, A.O., Zubarev, A.Yu., (1998) Physica A, 251, p. 348; Zhou, S., Hu, R., Li, J., Chang, H., Kou, H., Zhou, L., (2010) Appl. Phys. Lett., 102, p. 022403; Streets, A.M., Quake, S.R., (2010) Phys. Rev. Lett., 104, p. 178102; Kelton, K.F., Greer, A.L., (2010) Nucleation in Condensed Matter: Applications in Materials and Biology, , Elsevier Amsterdam; Nguyen, T.N.P., Kim, K.-J., (2008) Int. J. Pharm., 364, p. 1; Yang, H., Rasmuson, Å.C., (2013) Cryst. Growth Des., 13, p. 4226; Buyevich, Yu.A., Mansurov, V.V., (1990) J. Cryst. Growth, 104, p. 861; Barlow, D.A., Baird, J.K., Su, C.-H., (2004) Cryst. Growth Des., 264, p. 417; Alexandrov, D.V., Nizovtseva, I.G., (2014) Proc. R. Soc. A, Math. Phys. Eng. Sci., 470, p. 20130647; Alexandrov, D.V., Malygin, A.P., (2014) Model. Simul. Mater. Sci. Eng., 22, p. 015003; Zeldovich, Ya.B., (1943) Acta Physicochim. USSR, 18, p. 1; Lifshitz, E.M., Pitaevskii, L.P., (1981) Physical Kinetics, , Pergamon Press New York; Alexandrov, D.V., Malygin, A.P., (2013) J. Phys. A, Math. Theor., 46, p. 455101; Buyevich, Yu.A., Mansurov, V.V., Natalukha, I.A., (1991) Chem. Eng. Sci., 46, p. 2573; Zumstein, R.C., Rousseau, R.W., (1987) AIChE J., 33, p. 121; Randolph, A., Larson, M., (1988) Theory of Particulate Processes, , Academic Press San Diego; Gardiner, C.W., (1983) Handbook on Stochastic Methods: For Physics, Chemistry and Natural Sciences, , Springer Berlin; Lifshitz, I.M., Slyozov, V.V., (1961) J. Phys. Chem. Solids, 19, p. 35; Shneidman, V.A., (2013) Phys. Rev. e, 88, p. 010401; Ditkin, V.A., Prudnikov, A.P., (1965) Integral Transforms and Operational Calculus, , Pergamon Press Oxford
Correspondence Address Alexandrov, D.V.; Department of Mathematical Physics, Ural Federal University, Lenin ave. 51, Ekaterinburg 620000, Russian Federation; email: dmitri.alexandrov@usu.ru
Publisher Elsevier
CODEN PYLAA
Language of Original Document English
Abbreviated Source Title Phys Lett Sect A Gen At Solid State Phys
Source Scopus