Stochastically driven transitions between climate attractors / Alexandrov D.V., Bashkirtseva I.A., Ryashko L.B. // Tellus, Series A: Dynamic Meteorology and Oceanography. - 2014. - V. 66, l. 1.

ISSN:
02806495
Type:
Article
Abstract:
The classical non-linear climatic model previously developed by Saltzman with co-authors and Nicolis is analysed in both the deterministic and stochastic cases in a wider domain of system parameters. A detailed analysis of the deterministic model shows a co-existence of a stable cycle and equilibrium phase points of the climate system localisation. A fine structure of attraction basins existing around stable equilibria is studied. The model under consideration possesses the noise-induced transitions between possible system attractors (limit cycle and two equilibria) in the case of stochastic dynamics caused by temperature fluctuations. A new phenomenon of stochastic generation of large amplitude oscillations around two equilibrium points in the absence of a limit cycle is revealed. The co-existence of large-, small- and mixed-mode stochastic transitions between the climate system attractors is found. © 2014 D. V. Alexandrov et al.
Author keywords:
attraction basins; climatic model; noise-induced transitions; stochastic disturbances
Index keywords:
atmospheric dynamics; atmospheric structure; climate modeling; nonlinearity; stochasticity
DOI:
10.3402/tellusa.v66.23454
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904563924&doi=10.3402%2ftellusa.v66.23454&partnerID=40&md5=a3af1e6cf45fe9be3a7a0b5aac76c2a1
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 23454
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904563924&doi=10.3402%2ftellusa.v66.23454&partnerID=40&md5=a3af1e6cf45fe9be3a7a0b5aac76c2a1
Affiliations Department of Mathematical Physics, Ural Federal University, Lenin ave. 51, Ekaterinburg, Russian Federation
Author Keywords attraction basins; climatic model; noise-induced transitions; stochastic disturbances
References Alley, R.B., Marotzke, J., Nordhaus, W.D., Overpeck, J.T., Peteet, D.M., (2003) Abrupt climate change. Science., 299, pp. 2005-2010; Anishchenko, V.S., Astakhov, V.V., Neiman, A.B., Vadivasova, T.E., Schimansky-Geier, L., Nonlinear Dynamics of Chaotic and Stochastic Systems (2007) Tutorial and Modern Development, p. 449. , Springer-Verlag, Berlin, Germany; Arnold, L., (1998) Random Dynamical Systems., p. 586. , Springer-Verlag, Berlin, Germany; Bashkirtseva, I., Chen, G., Ryashko, L., Analysis of noise-induced transitions from regular to chaotic oscillations in the Chen system (2012) Chaos., 22, p. 033104; Bashkirtseva, I., Neiman, A.B., Ryashko, L., Stochastic sensitivity analysis of the noise-induced excitability in a model of a hair bundle (2013) Phys. Rev. E., 87, p. 052711; Bashkirtseva, I., Ryashko, L., Sensitivity analysis of stochastic attractors and noise-induced transitions for population model with Allee effect. (2011) Chaos., 21, p. 047514; Bashkirtseva, I., Ryashko, L., Stikhin, P., (2010) Noise-induced backward bifurcations of stochastic 3D-cycles. Fluctuation Noise Lett., 9, pp. 89-106; Bashkirtseva, I.A., Ryashko, L.B., Stochastic sensitivity of 3D-cycles. (2004) Math. Comput. Simul., 66, pp. 55-67; Box, G.E.P., Muller, M.E., A note on the generation of random normal deviates. (1958) Ann. Math. Stat. 29, pp. 610-611; Chekroun, M.D., Simonnet, E., Ghil, M., Stochastic climate dynamics: random attractors and time-dependent invariant measures. (2011) Physica D., 240, pp. 1685-1700; Crucifix, M., Oscillators and relaxation phenomena in Pleistocene climate theory (2012) Phil. Trans. R. Soc. A., 370, pp. 1140-1165; Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F., Stochastic resonance. (1998) Rev. Mod. Phys., 70, pp. 223-287; Holmes, J., Lowe, J., Wolff, E., Srokosz, M., (2011) Rapid climate change: lessons from the recent geological past. Glob. Planet. Change., 79, pp. 157-162; Horsthemke, W., Lefever, R., (1984), p. 318. , Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology. Springer, Berlin, Germany; Imkeller, P., Von Storch, J.S., (2001) Stochastic Climate Models., 407. , Birkhauser, Berlin, Germany; Kloeden, P.E., Platen, E., Numerical Solution of Stochastic Differential Equations. (1992), p. 632. , Springer, Berlin, Germany; Lai, Y.C., Tél, T., (2011) Transient Chaos: Complex Dynamics on Finite Time Scales., p. 497. , Springer, Berlin, Germany; Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L., Effects of noise in excitable systems. (2004) Phys Rep., 392, pp. 321-424; McDonnell, M.D., Stocks, N.G., Pearce, C.E.M., Abbott, D., Stochastic Resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization (2008), Cambridge University Press, Cambridge, UK; Nicolis, C., Self-oscillations and predictability in climate dynamics (1984) Tellus A., 36, pp. 1-10; Nicolis, C., Long-term climatic variability and chaotic dynamics. (1987) Tellus A., 39, pp. 1-9; Saltzman, B., A survey on statistical-dynamical models of the terrestrial climate. (1978) Adv. Geophys., 20, pp. 183-304; Saltzman, B., Stochastically-driven climate fluctuations in the sea-ice, ocean temperature, CO2 feedback system. (1982) Tellus., 34, pp. 97-112; Saltzman, B., Dynamical Paleoclimatology: Generalised Theory of Global Climate Change (2002), p. 354. , Academic Press, San Diego, USA; Saltzman, B., Moritz, R.E., A time-dependent climatic feedback system involving sea-ice extent, ocean temperature, and CO2. (1980) Tellus., 32, pp. 93-118; Saltzman, B., Sutera, A., Evenson, A., Structural stochastic stability of a simple auto-oscillatory climatic feedback system. (1981) J. Atm. Sci., 38, pp. 494-503; Saltzman, B., Sutera, A., Hansen, A.R., A possible marine mechanism for internally generated long-period climate cycles. (1982) J. Atm. Sci., 39, pp. 2634-2637; Selvam, A.M., (2007) Chaotic Climate Dynamics., p. 156. , Luniver Press, Frome, UK; Thurow, J., Peterson, L.C., Harms, U., Hodell, D.A., Cheshire, H., Acquiring high to ultra-high resolution geological records of past climate change by scientific drilling. (2009) Sci. Drill., 8, pp. 46-56; White, J.W.C., Alley, R.B., Brigham-Grette, J., Fitzpatrick, J.J., Jennings, A.E., Past rates of climate change in the Arctic. (2010) Quat. Sci. Rev., 29, pp. 1716-1727
Correspondence Address Alexandrov, D.V.; Department of Mathematical Physics, Ural Federal University, Lenin ave. 51, Ekaterinburg, Russian Federation; email: dmitri.alexandrov@usu.ru
Publisher Co-Action Publishing
Language of Original Document English
Abbreviated Source Title Tellus Ser. A Dyn. Meteorol. Oceanogr.
Source Scopus