Regular and chaotic regimes in Saltzman model of glacial climate dynamics under the influence of additive and parametric noise / Alexandrov D.V., Bashkirtseva I.A., Fedotov S.P., Ryashko L.B. // European Physical Journal B. - 2014. - V. 87, l. 10.

ISSN:
14346028
Type:
Article
Abstract:
It is well-known that the climate system, due to its nonlinearity, can be sensitive to stochastic forcing. New types of dynamical regimes caused by the noise-induced transitions are revealed on the basis of the classical climate model previously developed by Saltzman with co-authors and Nicolis. A complete parametric classification of dynamical regimes of this deterministic model is carried out. On the basis of this analysis, the influence of additive and parametric noises is studied. For weak noise, the climate system is localized nearby deterministic attractors. A mixture of the small and large amplitude oscillations caused by noise-induced transitions between equilibria and cycle attraction basins arise with increasing the noise intensity. The portion of large amplitude oscillations is estimated too. The parametric noise introduced in two system parameters demonstrates quite different system dynamics. Namely, the noise introduced in one system parameter increases its dispersion whereas in the other one leads to the stabilization of the climatic system near its unstable equilibrium with transitions from order to chaos. © 2014, EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.
Author keywords:
Statistical and Nonlinear Physics
Index keywords:
Gaussian noise (electronic); Stochastic systems; Deterministic modeling; Large amplitude oscillation; Noise-induced transition; Parametric classification; Regular and chaotic regimes; Statistical and
DOI:
10.1140/epjb/e2014-50208-0
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84919740429&doi=10.1140%2fepjb%2fe2014-50208-0&partnerID=40&md5=aa48b4bd1bb4c143ec43307ed1776d81
Соавторы в МНС:
Другие поля
Поле Значение
Page count 10
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84919740429&doi=10.1140%2fepjb%2fe2014-50208-0&partnerID=40&md5=aa48b4bd1bb4c143ec43307ed1776d81
Affiliations Department of Mathematical Physics, Ural FederalUniversity, Lenina ave., 51, Ekaterinburg, Russian Federation; School of Mathematics, The University of Manchester, Oxford Road, Manchester, United Kingdom
Author Keywords Statistical and Nonlinear Physics
Funding Details Ministry of Education and Science of the Russian Federation
References Miller, K.G., Mountain, G.S., Wright, J.D., Browning, J.V., (2011) Oceanogr., 24, p. 40; de Boer, B., van de Wal, R.S.W., Lourens, L.J., Bintanja, R., Reerink, T.J., (2013) Clim. Dyn., 41, p. 1365; Chaotic Climate Dynamics (Luniver Press (2007) UK; Crucifix, M., (2012) Philos. Trans. R. Soc. A, 370, p. 1140; (2002) Dynamical Paleoclimatology, , Academic Press, San Diego:; Nicolis, C., (1987) Tellus, 39A, p. 1; Jouzel, J., Masson-Delmotte, V., (2010) WIREs Clim. Change, 1, p. 654; Scafetta, N., (2010) J. Atm. Solar Terrest. Phys., 72, p. 951; Alley, R.B., Marotzke, J., Nordhaus, W.D., Overpeck, J.T., Peteet, D.M., Pielke, R.A., Jr., Pierrehumbert, R.T., Wallace, J.M., (2003) Science, 299, p. 2005; Thurow, J., Peterson, L.C., Harms, U., Hodell, D.A., Cheshire, H., Brumsack, H.-J., Irino, T., Tada, R., (2009) Sci. Drill., 8, p. 46; White, J.W.C., Alley, R.B., Brigham-Grette, J., Fitzpatrick, J.J., Jennings, A.E., Johnsen, S.-J., Miller, G.H., Polyak, L., (2010) Quarter. Sci. Rev., 29, p. 1716; Holmes, J., Lowe, J., Wolff, E., Srokosz, M., (2011) Glob. Planet. Change, 79, p. 157; Saltzman, B., (1978) Adv. Geophys., 20, p. 183; Saltzman, B., Moritz, R.E., (1980) Tellus, 32, p. 93; Saltzman, B., Sutera, A., Evenson, A., (1981) J. Atm. Sci., 38, p. 494; Saltzman, B., (1982) Tellus, 34, p. 97; Nicolis, C., (1984) Tellus, 36A, p. 1; Nicolis, C., (1993) J. Stat. Phys., 70, p. 3; Arnold (1998) Random Dynamical Systems (Springer-Verlag; (1984) Noise-Induced Transitions, , Springer, Berlin:; Fedotov, S., Bashkirtseva, I., Ryashko, L., (2002) Phys. Rev. E, 66, p. 066310; Fedotov, S., Bashkirtseva, I., Ryashko, L., (2006) Phys. Rev. E, 73, p. 066307; Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F., (2009) Eur. Phys. J. B, 69, p. 1; (2001) Kurths, , Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press; Bashkirtseva, I., Ryashko, L., (2011) Chaos, 21, p. 047514; Alexandrov, D.V., Bashkirtseva, I.A., Malygin, A.P., Ryashko, L.B., (2013) Pure Appl. Geophys., 170, p. 2273; (1992) Numerical Solution of Stochastic Differential Equations, , Springer, Berlin:; Walters (1982) An Introduction to Ergodic Theory (Springer; Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M., (1980) Meccanica, 15, p. 9; Ditlevsen, P.D., Kristensen, M.S., Andersen, K.K., (2005) J. Climate, 18, p. 2594; Ditlevsen, P.D., Svensmark, H., Johnsen, S., (1996) Nature, 379, p. 810
Correspondence Address Ryashko, L.B.; Department of Mathematical Physics, Ural FederalUniversity, Lenina ave., 51, Russian Federation
Publisher Springer New York LLC
Language of Original Document English
Abbreviated Source Title Eur. Phys. J. B
Source Scopus