The steady-state solidification scenario of ternary systems: Exact analytical solution of nonlinear model / Alexandrov D.V., Malygin A.P. // International Journal of Heat and Mass Transfer. - 2012. - V. 55, l. 13-14. - P. 3755-3762.

ISSN:
00179310
Type:
Article
Abstract:
A mathematical model describing the steady-state solidification of ternary systems with mushy layers (primary and cotectic) is formulated: solidification along a liquidus surface is characterized by a primary mushy layer, and solidification along a cotectic line is characterized by a secondary (cotectic) mushy layer. Exact analytical solutions of the model under consideration are found in a parametric form (thicknesses of mushy layers, growth rate of their boundaries, temperature and composition fields, solid fractions are determined in an explicit form). The velocity of solidification is completely determined by temperature gradients in the solid and liquid phases. This velocity coincides with similar expressions describing binary melt solidification with a planar front or a mushy layer. It is shown that the liquid composition of the main component decreases in the cotectic and primary layers, whereas the second (cotectic) composition increases in the cotectic layer, attains a maximum point and decreases in the primary layer. © 2012 Elsevier Ltd. All rights reserved.
Author keywords:
Cotectic layer; Mushy layer; Primary layer; Solidification; Ternary alloy
Index keywords:
Binary melt; Cotectic layer; Exact analytical solutions; Explicit form; Liquid compositions; Liquid phasis; Liquidus surfaces; Mushy layer; Non-linear model; Parametric forms; Primary layer; Solid fra
DOI:
10.1016/j.ijheatmasstransfer.2
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84859735367&doi=10.1016%2fj.ijheatmasstransfer.2012.02.068&partnerID=40&md5=b386052a1ab89a8902d31dea06ade4d8
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84859735367&doi=10.1016%2fj.ijheatmasstransfer.2012.02.068&partnerID=40&md5=b386052a1ab89a8902d31dea06ade4d8
Affiliations Ural Federal University, Department of Mathematical Physics, Lenin ave. 51, Ekaterinburg 620083, Russian Federation
Author Keywords Cotectic layer; Mushy layer; Primary layer; Solidification; Ternary alloy
References Ivantsov, G.P., Diffusive supercooling in binary alloy solidification (1951) Dokl. Akad. Nauk SSSR, 81, pp. 179-182. , in Russian; Mullins, W.W., Sekerka, R.F., Stability of a planar interface during solidification of a dilute binary alloy (1964) J. Appl. Phys., 35, pp. 444-451; Wollkind, D.J., Segel, L.A., A nonlinear stability analysis of the freezing of a dilute binary alloy (1970) Phil. Trans. Roy. Soc. A, 268, pp. 351-380; Worster, M.G., Solidification of an alloy from a cooled boundary (1986) J. Fluid Mech., 167, pp. 481-501; Hunt, J.D., Steady state columnar and equiaxed growth of dendrites and eutectic (1984) Materials science and engineering, 65 (1), pp. 75-83. , DOI 10.1016/0025-5416(84)90201-5; Buyevich, Yu.A., Alexandrov, D.V., Mansurov, V.V., (2001) Macrokinetics of Crystallization, , Begell House New York-Wallingford; Aseev, D.L., Alexandrov, D.V., Directional solidification of binary melts with a non-equilibrium mushy layer (2006) International Journal of Heat and Mass Transfer, 49 (25-26), pp. 4903-4909. , DOI 10.1016/j.ijheatmasstransfer.2006.05.046, PII S001793100600411X; Aleksandrov, D.V., Theory of Solidification with a Quasi-Equilibrium Two-Phase Zone (2000) Doklady Physics, 45 (11), pp. 569-573. , DOI 10.1134/1.1333856; Alexandrov, D.V., Solidification with a quasiequilibrium mushy region: Exact analytical solution of nonlinear model (2001) Journal of Crystal Growth, 222 (4), pp. 816-821. , DOI 10.1016/S0022-0248(00)00960-X; Alexandrov, D.V., Solidification with a quasiequilibrium two-phase zone (2001) Acta Materialia, 49 (5), pp. 759-764. , DOI 10.1016/S1359-6454(00)00388-8, PII S1359645400003888; Alexandrov, D.V., Aseev, D.L., One-dimensional solidification of an alloy with a mushy zone: Thermodiffusion and temperature-dependent diffusivity (2005) J. Fluid Mech., 527, pp. 57-66; Alexandrov, D.V., Aseev, D.L., Directional solidification with a two-phase zone: Thermodiffusion and temperature-dependent diffusivity (2006) Computational Materials Science, 37 (1-2), pp. 1-6. , DOI 10.1016/j.commatsci.2005.12.019, PII S0927025605003472; Aseev, D.L., Alexandrov, D.V., Unidirectional solidification with a mushy layer. The influence of weak convection (2006) Acta Mater., 54, pp. 2401-2406; Alexandrov, D.V., Rakhmatullina, I.V., Malygin, A.P., On the theory of solidification with a two-phase concentration supercooling zone (2010) Russian Metall. (Metally), 8, pp. 745-750; Alexandrov, D.V., Ivanov, A.A., Malygin, A.P., Self-similar solidification of binary alloys (2009) Acta Phys. Polonica A, 115, pp. 795-799; Alexandrov, D.V., Malygin, A.P., Self-similar solidification of an alloy from a cooled boundary (2006) International Journal of Heat and Mass Transfer, 49 (3-4), pp. 763-769. , DOI 10.1016/j.ijheatmasstransfer.2005.07.047, PII S0017931005005296; Alexandrov, D.V., Malygin, A.P., Analytical description of seawater crystallization in ice fissures and their influence on heat exchange between the ocean and the atmosphere (2006) Doklady Earth Sciences, 411 (9), pp. 1407-1411. , DOI 10.1134/S1028334X06090169; Alexandrov, D.V., Malygin, A.P., Alexandrova, I.V., Solidification of leads: Approximate solutions of non-linear problem (2006) Annals of Glaciology, 44, pp. 118-122. , DOI 10.3189/172756406781811213; Huppert, H.E., Sparks, R.S.J., Double-diffusive convection due to crystallization in magmas (1984) Anuu. Rev. Earth Planet Sci., 12, pp. 11-37; Kurz, W., Fisher, D.J., (1986) Fundamentals of Solidification, , Trans. Tech. Publications Aedermannsdorf; Hurle, D.J.T., (1993) Handbook of Crystal Growth, , North-Holland Amsterdam; Worster, M.G., Solidification of Fluids (2000) Perspectives in Fluid Dynamics, pp. 393-446. , G.K. Batchelor, H.K. Moffatt, M.G. Worster, Cambridge University Press; Thompson, A.F., Huppert, H.E., Worster, M.G., Aitta, A., Solidification and compositional convection of a ternary alloy (2003) Journal of Fluid Mechanics, 497, pp. 167-199. , DOI 10.1017/S002211200300661X; Alexandrov, D.V., Ivanov, A.A., Nonlinear dynamics of directional solidification of ternary solutions with mushy layers (2009) Heat Mass Trans., 45, pp. 1467-1472; Aitta, A., Huppert, H.E., Gray Worster, M., Diffusion-controlled solidification of a ternary melt from a cooled boundary (2001) Journal of Fluid Mechanics, 432, pp. 201-217; Bloomfield, L.J., Huppert, H.E., Solidification and convection of a ternary solution cooled from the side (2003) Journal of Fluid Mechanics, 489, pp. 269-299. , DOI 10.1017/S0022112003005172; Anderson, D.M., A model for diffusion-controlled solidification of ternary alloys in mushy layers (2003) Journal of Fluid Mechanics, 483, pp. 165-197. , DOI 10.1017/S0022112003004129; Alexandrov, D.V., Nonlinear dynamics of solidification in three-component systems (2008) Dokl. Phys., 53, pp. 471-475; Alexandrov, D.V., Ivanov, A.A., Solidification of a ternary melt from a cooled boundary, or nonlinear dynamics of mushy layers (2009) Int. J. Heat Mass Transfer, 52, pp. 4807-4811; Alexandrov, D.V., Ivanov, A.A., The Stefan problem of solidification of ternary systems in the presence of moving phase transition regions (2009) J. Exp. Theoretical Phys., 108, pp. 821-829; Alexandrov, D.V., Solidification with a quasiequilibrium mushy zone: Exact analytical solution (2000) Int. J. Fluid Mech. Res., 27, pp. 213-222; Deguen, R., Alboussiere, T., Brito, D., On the existence and structure of a mush at the inner core boundary of the Earth (2007) Physics of the Earth and Planetary Interiors, 164 (1-2), pp. 36-49. , DOI 10.1016/j.pepi.2007.05.003, PII S0031920107001021; Alexandrov, D.V., Malygin, A.P., Coupled convective and morphological instability of the inner core boundary of the Earth (2011) Phys. Earth Planet. Inter., 189, pp. 134-141; Buffett, B.A., Earth's core and the geodynamo (2007) Science, 288, pp. 2007-2012; Fedotov, S., Bashkirtseva, I., Ryashko, L., Stochastic dynamo model for subcritical transition (2006) Phys. Rev. e, 73, pp. 066307-066311
Correspondence Address Alexandrov, D.V.; Ural Federal University, Department of Mathematical Physics, Lenin ave. 51, Ekaterinburg 620083, Russian Federation; email: Dmitri.Alexandrov@usu.ru
CODEN IJHMA
Language of Original Document English
Abbreviated Source Title Int. J. Heat Mass Transf.
Source Scopus