References |
Alexandrov, D.V., Solidification with a quasiequilibrium two-phase zone (2001) Acta Materialia, 49 (5), pp. 759-764. , DOI 10.1016/S1359-6454(00)00388-8, PII S1359645400003888; Alexandrov, D.V., Aseev, D.L., One-dimensional solidification of an alloy with a mushy zone: Thermodiffusion and temperature-dependent diffusivity (2005) JFM, 527, pp. 57-66; Alexandrov, D.V., Aseev, D.L., Nizovtseva, I.G., Huang, H.-N., Lee, D., Nonlinear dynamics of directional solidification with a mushy layer. Analytic solutions of the problem (2007) International Journal of Heat and Mass Transfer, 50 (17-18), pp. 3616-3623. , DOI 10.1016/j.ijheatmasstransfer.2007.02.006, PII S0017931007001512; Alexandrov, D.V., Nizovtseva, I.G., Malygin, A.P., Huang, H.-N., Lee, D., Unidirectional solidification of binary melts from a cooled boundary: Analytical solutions of a nonlinear diffusionlimited problem (2008) JPCM, 20 (11), p. 114105; Aseev, D.L., Alexandrov, D.V., Unirectional solidification with a mushy layer, the influence of weak convection (2006) Acta Mater., 54, pp. 2401-2406; De Boor, C., (2001) A Practical Guide to Splines, Revised Edition, , Springer-Verlog, NewYork; De Boor, C., (1985) Convergence of Cubic Spline Interpolation with the Not-a-knot Condition, , MRC 2876 ; University of Wisconsin at Madison; Borisov, V.T., (1987) Theory of the Two-Phase Zone of A Metal Ingot, , Moscow: Metallurgiya Publishing House; Boyd, J.P., (2001) Chebyshev and Fourier-Spectral Methods 2nd Ed., , Dover Mineola, New York; Brice, J.C., (1973) The Growth of Crystals from Liquid, , North Holland, Amsterdam; Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A., Spectral methods (2006) Fundamentals in Single Domains, , Springer, New York; Chalmers, B., (1964) Principles of Solidification, , Wiley, New York; Crank, J., (1984) Free and Moving Boundary Problems, , Clarendon Press, Oxford, England; Deguen, R., Alboussiere, T., Brito, D., On the existence and structure of a mush at the inner core boundary of the Earth (2007) Physics of the Earth and Planetary Interiors, 164 (1-2), pp. 36-49. , DOI 10.1016/j.pepi.2007.05.003, PII S0031920107001021; Fasano, A., Primicerio, M., General free boundary problems for the heat equation III (1977) J. Math. Anal. Appl., 59, pp. 1-14; Friedman, A., Free boundary problems for parabolic equations I. Melting of solids (1959) J. Math. Mechanics, 8, pp. 499-516; Fowler, A.C., The formation of freckles in binary alloys (1985) IMA J. Appl. Math., 35, pp. 159-174; Gibou, F., Fedkiw, R., A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem (2005) Journal of Computational Physics, 202 (2), pp. 577-601. , DOI 10.1016/j.jcp.2004.07.018, PII S0021999104002980; Gupta, S.C., The Classical Stefan Problem, Baisc Concepts, Modelling and Analysis, North-Holland series (2003) Appl. Math. and Mechanics, 45; Hill, J.M., (1987) One-Dimensional Stefan Problems: An Introduction, , Longman Scientific Technical, Harlow; Hills, R.N., Loper, D.E., Roberts, P.H., A thermodynamically consistent model of a mushy zone quarterly (1983) Jnl. of Mechanics & App. Maths., 36, pp. 505-540; Hobbs, P.V., (1974) Ice Physics, , Clarendon Oxford, England; Ivantsov, G.P., Diffusive supercooling in binary alloy solidification (1951) Dokl. Akad. Nauk SSSR, 81, pp. 179-182; Javierre, E., Vuik, C., Vermolen, F.J., Zwaag Der S.Van, A comparison of numerical Models for one-dimensional Stefan problem (2006) J. Com. Appl. Math., 192, pp. 445-459; Kyner, W.T., An existence and uniqueness theorem for a nonlinear Stefan problem (1959) J. Math. Mechanics, 8, pp. 483-498; Laudise, R.A., (1972) The Growth of Single Crystals, , Prentice Hall New York; Lee, D., Alexandrov, D.V., Numerical Modeling of One-Dimensional Binary Solidification -The Classical Two-Phase Stefan Problem (2010) IJPAM, 58 (4), pp. 381-416; Zhilin, L.I., Ito, K., (2006) The Immersed Interface Method, Numerical Solutions of PDEs Involving Interfaces and Irregular Domains, , SIAM, Philadelphia; Meirmanov, A.M., The stefan problem (1992) De Gruyter Expositions in Mathematics, 3. , translated from the Russian by Marek Niezgodka and Anna Crowley, Walter de Gruyter , Berlin; Morison, J., McPhee, M., Muench, R., The LeadEx experiment (1993) EOS. Trans. AGU, 74, pp. 393-397; Osher, S., Fedkiw, R., (2003) Level Set Methods and Dynamic Implicit Surfaces, , Springer, New York; Osher Stanley, Shu Chi-Wang, High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations (1991) SIAM Journal on Numerical Analysis, 28 (4), pp. 907-922; Rosenberg, F., (1979) Fundamentals of Crystal Growth, 1. , Springer, Berlin; Rubinstein, L.I., (1971) The Stefan Problem, , American Mathematical Society, Providence; Sethian, J.A., Set, L., (1999) Methods and Fast Marching Methods, , Cambridge University press, New York; Shen, J., Tang, T., (2006) Spectral and High-order Methods with Applications, , Science Press, Beijing, China; Vuik, C., (1993) Some Historical Notes about the Stefan Problem, Nieuw Archief voor Wiskunde, , 4Ed, Serie 157; Wettlaufer, J.S., Worster, M.G., Huppert, H.E., Solidification of leads: Theory, experiment and field observations (2000) J. Geophys. Res., 105, pp. 1123-1134 |