Flow-induced morphological instability and solidification with the slurry and mushy layers in the presence of convection / Alexandrov D.V., Malygin A.P. // International Journal of Heat and Mass Transfer. - 2012. - V. 55, l. 11-12. - P. 3196-3204.

ISSN:
00179310
Type:
Article
Abstract:
The linear analysis of convective morphological instability of the planar liquid-solid phase transition boundary is developed. The new stability criterion, dependent on the main parameter-extension rate (proportional to the vertical derivative of the fluid velocity), is deduced. This criterion generalizes analytical results of the recent works [H. Shimizu, J.P. Poirier, J.L. Le Mouël, Phys. Earth Planet. Inter. 151 (2005) 37-51; R. Deguen, T. Alboussire, D. Brito, Phys. Earth Planet. Inter. 164 (2007) 36-49], where convective mechanisms were only partially introduced in the model equations and stability analysis. The convective stability criterion demonstrates that the neutral stability curve divides two possible domains of morphologically stable and unstable solidification. These domains existing in the constitutionally supercooled conditions lead to two different crystallization scenarios "constitutional supercooling + morphological stability" and "constitutional supercooling + morphological instability", which are described by idealized nonlinear slurry and mushy layer models with convection. Analytical solutions of these models taking into account nucleation and kinetic mechanisms of the growing solid phase are constructed for the steady-state solidification conditions. © 2012 Elsevier Ltd. All rights reserved.
Author keywords:
Convective instability; Mushy layer; Slurry layer; Solid-liquid phase transitions; Solidification
Index keywords:
Analytical results; Analytical solutions; Constitutional supercooling; Convective instabilities; Convective stability; Fluid velocities; Kinetic mechanism; Layer model; Linear analysis; Liquid-solid p
DOI:
10.1016/j.ijheatmasstransfer.2
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84859592859&doi=10.1016%2fj.ijheatmasstransfer.2012.02.048&partnerID=40&md5=ef376031c5da510910ef2f7852cf16d7
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84859592859&doi=10.1016%2fj.ijheatmasstransfer.2012.02.048&partnerID=40&md5=ef376031c5da510910ef2f7852cf16d7
Affiliations Ural Federal University, Department of Mathematical Physics, Lenin ave. 51, Ekaterinburg 620000, Russian Federation
Author Keywords Convective instability; Mushy layer; Slurry layer; Solid-liquid phase transitions; Solidification
References Thompson, D.W., (1952) On Growth and Form, , Cambridge University Press; Langer, J.S., Instabilities and pattern formation in crystal growth (1980) Rev. Mod. Phys., 52, pp. 1-28; Pelce, P., (1988) Dynamics of Curved Fronts, , Academic Press Boston; Buyevich, Yu.A., Alexandrov, D.V., Mansurov, V.V., (2001) Macrokinetics of Crystallization, , Begell House, New York-Wallingford; Chalmers, B., (1964) Principles of Solidification, , John Wiley & Sons New York; Ravi, V.K., (1981) Imperfections and Impurities in Semiconductor Silicon, , John Wiley & Sons New York; Kurz, W., Fisher, D.J., (1986) Fundamentals of Solidification, , Trans. Tech. Publications Aedermannsdorf; Eicken, H., Structure of under-ice melt ponds in the central Arctic and their effect on the sea-ice cover (1994) Limnol. Oceanogr., 39, pp. 682-694; Eicken, H., Krouse, H.R., Kadko, D., Perovich, D.K., Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice (2002) J. Geophys. Res., 107, pp. 1-20; Mullins, W.W., Sekerka, R.F., Stability of a planar interface during solidification of a dilute binary alloy (1964) J. Appl. Phys., 35, pp. 444-451; Sekerka, R.F., A stability function for explicit evaluation of the Mullins-Sekerka interface stability criterion (1965) J. Appl. Phys., 36, pp. 264-268; Sekerka, R.F., Morphological Stability (1968) J. Crystal Growth, 3-4, pp. 71-81; Sekerka, R.F., (1973) Morphological Stability, in Crystal Growth: An Introduction, pp. 403-442. , P. Hartman (Ed.), North-Holland; Cserti, J., Tichy, G., Stability of anisotropic liquid-solid interfaces (1968) Acta Metall., 34, pp. 1029-1034; Wilson, L.O., The effect of fluctuating growth rates on segregation in crystals grown from the melt (1980) J. Cryst. Growth, 48, pp. 435-458; Wheeler, A., The effect of a periodic growth rate on the morphological stability of a freezing binary alloy (1984) J. Cryst. Growth, 67, pp. 8-26; Wollhover, K., Scheiwe, M., Hartmann, U., Korber, Ch., On morphological stability of planar phase boundaries during unidirectional transient solidification of binary aqueous solutions (1985) Int. J. Heat Mass Trans., 28, pp. 897-902; Laxmanan, V., Morphological transitions in the rapid solidification regime: A re-examination of the fundamental validity of the absolute stability concept of Mullins and Sekerka (1989) Acta Metall., 37, pp. 1109-1119; Alexandrov, D.V., Mansurov, V.V., Dynamic stability of a solidification process of a binary melt in the presence of a broad quasiequilibrium mushy region (1996) Scripta Mater., 35, pp. 787-790; Alexandrov, D.V., Mansurov, V.V., Dynamical instability of quasi-steady solidification in a binary melt with a narrow pseudoequilibrium two-phase zone (1996) Crystallogr. Rep., 41, pp. 357-359; Alexandrov, D.V., Mansurov, V.V., Galenko, P.K., Morphological stability of the plane phase boundary in a binary melt for processes of high-rate crystallization (1996) Phys. Dokl., 41, pp. 511-513; Alexandrov, D.V., Ivanov, A.O., Dynamic stability analysis of the solidification of binary melts in the presence of a mushy region: Changeover of instability (2000) J. Crystal Growth, 210, pp. 797-810; Alexandrov, D.V., Self-similar solidification: Morphological stability of the regime (2004) Int. J. Heat Mass Trans., 47, pp. 1383-1389; Alexandrov, D.V., Malygin, A.P., Convective instability of directional crystallization in a forced flow: The role of brine channels in a mushy layer on nonlinear dynamics of binary systems (2011) Int. J. Heat Mass Trans., 54, pp. 1144-1149; Delves, R.T., Theory of stability of a solid-liquid interface during growth from stirred melts (1968) J. Crystal Growth, 3-4, pp. 562-568; Coriell, S.R., Hurle, D.T.J., Sekerka, R.F., (1976) Interface Stability during Crystal Growth: The Effect of Stirring, 32, pp. 1-7; Favier, J.J., Rouzaud, A., Morphological stability of the solidification interface under convective conditions (1983) J. Crystal Growth, 64, pp. 367-379; Forth, S.A., Wheeler, A.A., Coupled convective and morphological instability in a simple-model of the solidification of a binary alloy (1992) J. Fluid Mech., 236, pp. 61-94; Chen, Y.-J., Davis, S.H., Directional solidification of a binary alloy into a cellular convective flow: Localized morphologies (1999) J. Fluid Mech., 395, pp. 253-270; Ivantsov, G.P., Diffusive supercooling in binary alloy solidification (1951) Dokl. Akad. Nauk SSSR, 81, pp. 179-182. , (in Russian); Shimizu, H., Poirier, J.P., Le Mouel, J.L., On crystallization at the inner core boundary (2005) Phys. Earth Planet. Inter., 151, pp. 37-51; Worster, M.G., Solidification of an alloy from a cooled boundary (1986) J. Fluid Mech., 167, pp. 481-501; Aseev, D.L., Alexandrov, D.V., Nonlinear dynamics for the solidification of binary melt with a nonequilibrium two-phase zone (2006) Dokl. Phys., 51, pp. 291-295; Aseev, D.L., Alexandrov, D.V., Directional solidification of binary melts with a non-equilibrium mushy layer (2006) Int. J. Heat Mass Transfer, 49, pp. 4903-4909; Hills, R.N., Loper, D.E., Roberts, P.H., A thermodynamically consistent model of a mushy zone (1983) Q. J. Appl. Math., 36, pp. 505-539; Fowler, A.C., The formation of freckles in binary alloys (1985) IMA J. Appl. Math., 35, pp. 159-174; Borisov, V.T., (1987) Theory of Two-Phase Zone of Metallic Ingot, Metallurgia, Moscow, , in Russian; Alexandrov, D.V., Theory of solidification with a quasi-equilibrium two-phase zone (2000) Phys. Dokl., 45, pp. 569-573; Alexandrov, D.V., Solidification with a quasiequilibrium mushy region: Exact analytical solution of nonlinear model (2001) J. Crystal Growth, 222, pp. 816-821; Alexandrov, D.V., Solidification with a quasiequilibrium two-phase zone (2001) Acta Mater., 49, pp. 759-764; Alexandrov, D.V., Aseev, D.L., One-dimensional solidification of an alloy with a mushy zone: Thermodiffusion and temperature-dependent diffusivity (2005) J. Fluid Mech., 527, pp. 57-66; Alexandrov, D.V., Rakhmatullina, I.V., Malygin, A.P., On the theory of solidification with a two-phase concentration supercooling zone (2010) Russian Metallurgy (Metally), 8, pp. 745-750; Aseev, D.L., Alexandrov, D.V., Unidirectional solidification with a mushy layer. the influence of weak convection (2006) Acta Mater., 54, pp. 2401-2406; Deguen, R., Alboussire, T., Brito, D., On the existence and structure of a mush at the inner core boundary of the Earth (2007) Phys. Earth Planet. Inter., 164, pp. 36-49; Alexandrov, D.V., Galenko, P.K., Herlach, D.M., Selection criterion for the growing dendritic tip in a non-isothermal binary system under forced convective flow (2010) J. Crystal Growth, 312, pp. 2122-2127; Huppert, H.E., Worster, M.G., Vigorous motions in magma chambers and lava lakes (1992) Chaotic Processes in the Geological Sciences, 41, pp. 141-173. , Ed. D.A. Yuen. New-York, Springer-Verlag; Loper, D.E., A model of the dynamical structure of Earth's outer core (2000) Phys. Earth Planet. Inter., 117, pp. 179-196; Worster, M.G., Natural convection in a mushy layer (1991) J. Fluid Mech., 224, pp. 335-359; Batchelor, G.K., Transport properties of two-phase materials with random structure (1974) Ann. Rev. Fluid Mech., 6, pp. 227-255; Buyevich, Yu.A., Alexandrov, D.V., (2005) Heat Transfer in Dispersions, , Begell House New York; Scheil, E., Bemerkungen zur schichtkiistallbildung (1942) Zeichrift fur Metallkunde, 34, pp. 70-72; Flemings, M.C., (1974) Solidification Processing, , McGraw-Hill Book Company New York; Kerr, R.C., Woods, A.W., Worster, M.G., Huppert, H.E., Solidification of an alloy cooled from above. Part 1. Equilibrium growth (1990) J. Fluid Mech., 216, pp. 323-342; Alexandrov, D.V., Nizovtseva, I.G., To the theory of underwater ice evolution, or nonlinear dynamics of "false bottoms" (2008) Int. J. Heat Mass Transfer, 51, pp. 5204-5208; Zeldovich, Ya.B., On the theory of formation of a new phase (1942) Cavitation, Zh. Eksperiment. Technich. Fiz., 12, pp. 525-536; Frenkel, J., (1955) Theory of Liquids, , Dover New York; Chernov, A.A., Givargizov, Ye.I., Bagdasarov, Kh.S., (1990) Modern Crystallography. Crystallization Processes, 3. , Nauka Publishing House, Moscow; Nayfen, A.H., (1981) Introduction to Perturbation Techniques, , Wiley Interscience Publication New York, Chichester, Brisbane, Toronto; Fedoryuk, M.V., (1987) Asymptotics, , Nauka Publishing House, Moscow Integrals and Series; Alexandrov, D.V., Churbanov, A.G., Vabishchevich, P.N., (1999) Int. J. Fluid Mech. Res., 26, pp. 248-264; Alexandrov, D.V., Incipience of a mushy zone in binary melt solidification processes (2000) Int. J. Fluid Mech. Res., 27, pp. 223-238; Alexandrova, I.V., Alexandrov, D.V., Aseev, D.L., Bulitcheva, S.V., Mushy layer formation during solidification of binary alloys from a cooled wall: The role of boundary conditions (2009) Acta Phys. Pol. A, 115, pp. 791-794
Correspondence Address Alexandrov, D.V.; Ural Federal University, Department of Mathematical Physics, Lenin ave. 51, Ekaterinburg 620000, Russian Federation; email: Dmitri.Alexandrov@usu.ru
CODEN IJHMA
Language of Original Document English
Abbreviated Source Title Int. J. Heat Mass Transf.
Source Scopus